
Graph Query Language Task Force
first year update

Peter Boncz
boncz@cwi.nl

GraphQL Background

 The GraphQL task force of LDBC studies query
languages for graph data management systems, and
specifically those systems storing so-called Property
Graph data.

 This query language should cover the needs of the
most important use-cases for such systems, including
(at least) the LDBC's own social network benchmark's
Interactive and Business Intelligence workloads.

GraphQL TF Composition
• Renzo Angles, Universidad de Talca
• Marcelo Arenas, PUC Chile - task force lead
• Pablo Barceló, Universidad de Chile
• Peter Boncz, Vrije Universiteit Amsterdam
• George Fletcher, Eindhoven University of Technology
• Irini Fundulaki, FORTH
• Claudio Gutierrez, Universidad de Chile
• Tobias Lindaaker, Neo Technology
• Marcus Paradies, SAP
• Raquel Pau, UPC
• Arnau Prat, UPC / Sparsity
• Tomer Sagi, HP Labs
• Oskar van Rest, Oracle Labs
• Hannes Voigt, TU Dresden
• Yinglong Xia, Huawei America

GraphQL Mission

the goals of the GraphQL task force are the following:

• to devise a list of desired features and functionalities of
such a query language

• to evaluate a number of existing languages, in particular
Cypher, and possibly Gremlin v3, SPARQL and SQL in this
respect and identify possible problems in these.

• The result should be a better understanding of the design
space and state-of-the-art.

• The target is to achieve this within one year. In a second
phase, we can develop proposals for changes to existing
query languages, or even a new query language..

GraphQL Log (14/28)
2015-06-08 wiki, data model

2015-06-22 data model

2015-07-06 data model

2015-07-22 case study: SPARQL 1.1

2015-08-03 case study: Cypher

2015-08-17 case study: PGQL

2015-08-31 theory: Regular Path Queries

2015-09-28 case study: Sparksee API

2015-10-12 case study: Gremlin

2015-10-26 survey on history of graph query languages

2015-11-16 survey on history of graph query languages

2015-11-23 case study: “graphs at a time” proposal sigmod2008

2015-12-07 case studies: conceptual schemas (i), and composability (ii)

2015-12-21 summary so far, attention for LDBC SNB query requirements

GraphQL Log (28/28)
2016-01-11 (i) LDBC TUC use case overview, (ii) types (graphs, tables, paths)

2016-01-25 case sudies: type systems in Cypher and PGQL

2016-02-01 meta-discussion: wiki pages for graph data model, functionalities

2016-02-15/02-29/03-07 generate more examples and functionalities

2016-03-14 case study: graph pattern matching & binding tables

2016-03-22 discussion: binding tables  without schema

2016-04-04 proposal: reachability queries

2016-04-18 discussion: shortest path queries  monotone top-k with constraints

2016-05-09 proposal: RPQs with regular expression with memory (REM)

2016-05-23 proposal: relational graph query processing (aka Peter’s brain dump)

2016-05-30 proposal: constraints on paths

2016-06-06 discussion: Peter’s brain dump conclusions

2016-06-20 proposal: data type transformations

Decision: Property Graph Data Model

In the following definition, we assume the existence of the following sets:

• L is an infinite set of (node and edge) labels;

• P is an infinite set of property names;

• V is an infinite set of literals (actual values).

Moreover, we assume that SET(X) is the set of all finite subsets of a given set X. Then a
property graph is a tuple G = (N, E, ρ, λ, σ), where:

• nodes: N is a finite set of nodes;

• edges: E is a finite set of edges such that N and E have no elements in common;

 ρ : E → (N × N) is a total function;

• labels: λ : (N U E) → SET(L) is a total function;

• properties:

 σ : (N U E) × P → V is a partial function.

We decided not to define a schema (expected properties and their types, given a label)

The Type Discussion
What are the types needed in the graph query language, apart from the basic

types (such as string and integer)?

• It has been argued that GRAPH and TABLE should be types in the languages.

• It has also been argued that a type PATH should be included in the language.

• Do we need to consider only simple paths?

• Do we need to consider sets of objects? E.g. return a set of graphs.

• Do we need to include lists of objects? E.g. a path could be a list of vertexes.

Discussion: Shortest Paths Functionality

• shortest paths (hops), and/or weighted shortest path
– weight function: monotone sum (only then Dijkstra)

• path constraints (and implications for efficiency)
– Constraints on what? Just {edge,vertex} properties on the path?

– Or full-blown subqueries? Constraints involving the path so far?

• query embedding of shortest paths
– single shortest paths (between one source and destination)

– Or: all pair shortest paths

– Or: bulk shortest paths (between many src,dst combinations, eg delivered by subquery)

• What to return:
– The distance / total weight?

– Or the shortest path? What if multiple path with the same cost exist? Return ,ultiple or one,
and if so, how to make this deterministic?

• top-N shortest paths – a natural extension of shortest paths (N=1)
– Best N paths for each src,dst pair.

– Is this useful functionality? Some use cases cast doubt on this

optional

Relational Graph Querying

Idea: “seeing graphs in tables”
• G =(V,E) with

– V denoting a table of vertexes, with
• one non-null unique key column V.key
• nullable columns V.p_i holding vertex properties p_i;

– E denoting a table of edges with
• columns E.from and E.to holding non-null values from the domain of V.key
• nullable columns E.p_j holding edge properties p_j

– We can use non-NF1 tables for multi-valued properties
– There are two foreign key constraints

• E.from  V.key
• E.to  V.key

ALTER TABLE E ADD GRAPH KEYS (mykey)

 EDGE (from) TO (to)

 REFERENCES V(key)

Example SQL Extension

On to cheapest weight path queries:
SELECT v1, v2, CHEAPEST SUM(e:distance) score, ..

FROM .. (introducing v1 and v2 here) ..

WHERE v1.key REACHES v2.key OVER E e EDGE E_from,E_to

ORDER BY ..

• Rule: if a CHEAPEST SUM(X:) predicate is used in the SELECT list, this must match
a REACHES..OVER X condition in the WHERE, in which case we do not only ask to
filter where paths exists, but also compute the cheapest cost of all such paths (this
cost is bound to score).

• The parameter to SUM(X:expr) can be a complex expr, in which (only) binding
variable X can play a role. Note that it may be used to access edge properties.

• Note we avoid binding a variable to the space of all possible paths in this syntax.

• Restricting bindings of e to only the edges on the single-cheapest path (for each
v1,v2) is healthy as I have become convinced that top-N paths only produce
 meaningless results on real data, with N>1

Decisions: Relational Graph Querying

(1) Using tables to represent vertexes, edges, and paths

• Accepted.

(2) Using nested tables to represent paths

• Accepted.

(3) Constructing edge sets from subqueries, i.e., having compositionality of queries

• Accepted

(4) Restricting to monotone sums for weighted shortest path functions (accepted)

• Accepted

(5) Using a black box approach to shortest paths that avoids exposing all path bindings

• No conclusion yet

(6) It is a worthwhile/positive endeavor to consider extending SQL, in addition to
design of native graph QL.

• Accepted to do a coupled joint study of two languages.

Computable Path Constraints: REM

Proposal gets a lot of expressive power out of the efficiently computable family
Proposal is criticized for being hard to understand by non-expert users

Composable Graph Patterns

Composable Graph Patterns

Composable Graph Patterns

Decisions: Composable Path Patterns

The graph query language should allow for..

(1) (node-selecting) reachability RPQs

• Accepted.

(2) k-shortest path finding RPQs (i.e, path-selecting queries)

• Accepted.

(3) constraining both edge labels and properties of vertices and edges along paths.

• Rejected.

(4) comparing data values (labels/properties) along paths

• Accepted.

(5) translation of all PQs to REMs ("queries should be executable in polynomial time“)

• Accepted.

6) Specifying min+max repetition on Kleene stars

• Accepted.

Discussion & Outlook

• Did we achieve our year#1 objectives?

– We got close.

– Some really great people in the TF. Good atmosphere.

• Modus Operandi of GraphQL TF

– Not easy to structure such a multi-faceted discussion

– Linear decision points?

• Future

– More {discussions, case studies, functionalities, *}

– A language proposal document
• One proposal, or two (native + SQL extension)?

