" FRAPPE

Querying and managing
evolving code dependency graphs

David Meibusch & Nathan Hawes

Oracle Labs Australia
June 2016

ORACLE

Safe Harbour

The followingis intended to provide some insight into a line of research in Oracle
Labs. It is intended for information purposes only, and may not be incorporated
Into any contract.

It is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. Oracle reserves the right to
alter its development plans and practices at any time, and the development,
release, and timing of any features or functionality described in connection with
any Oracle product or service remains at the sole discretion of Oracle.

Any views expressed in this presentation are my own and do not necessarily reflect
the views of Oracle.

I EA CLG Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: querying the Linux kernel dependency graph 2

The Truth is in the Source!

But the source is often complicated, multi-language and really really big

ORACLE

Frappé: code as a property graph
* Graph natural in this domain
— Call graph, directory hierarchy, type hierarchy, data/control flow graphs

* Overlay data from different spaces
— File system, build, preprocessor, AST, cross-language

* Lets users specify queries in terms of this graph

I EA CLG Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 4

How it works

|§ EXTRACTOR |E IMPORTER b

Source Code fo Server

I !‘ CLE Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 5

compiled_from prog

Graph model example l ierom|

o compiled_from

module

int bar(int); foo.h

compiled_from

) file contains includes . includes -
c Y} - - foo.h foo.c

int bar(int *input) {
return *input * 2;]

v
} bar
function_decl file contains
calls

: declares

#include “foo.h” (SIS has_param
int main(int argc, char **argv) {
return bar(&argc); | |
} argv argc

parameter parameter

file_contains

has_param bar
- function

A

has_param

input

parameter

is_type is_type

gcc foo.c -c -0 foo.o
gcc main.c foo.o -0 prog

v

char
primitive

ORACI—E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: querying the Linux kernel dependency graph

How it works

EDITOR PLUGINS

Server User

I E‘ CI_E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 7

Use cases

* Code search

* Code navigation
— Go to definition
— Find references

* Code comprehension
— Visualization
— Transitive closure calls, includes, etc.
— Shortest path queries

OR A(Le Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases

How it looks

/* Return the working directory for the curre
job_working_directory, this does not call
of the functions it calls. This is so tha
from a signal handler. */

static char *

363 current_working_directory ()

{

char *dir;

static char d[PATH_MAX];

dir = get_string_value ("PWD");

if (dir == 0 && the_current_working_directo
dir = the_current_working_directory;

if (dir == 0)
{

dir = getcwd (d, sizeof(d));

if (dir)
dir = d;

to "current_
declared by Function..

Balled by Function
called by Function
called by Function
called by Function

ORACLE

current_working..
print_pipeline
start_job
notify_of_job_s..
notify_of_job_s..

rl_rubout
ib/readline/text.c

builtins.c

int
rl_rubout (count, key)
int count, key;

\

if (count < 0)

14

return (rl_delete (-count, key));
if (!rl_point)

rl_ding ();
redir.c

return -1;

read.c

mkbuiltins.c

printf.c

trap.c

bashline.c

execute_sigple_command

print_cmd.c shell@

if (rl_insert_mode ==)
variables.c

return (_rl_overwrite_rubout (count, key)

arrayfupc.c

return (_rl_rubout_char (count, key));

general.

Use cases

'\
* Code search
* Code navigation
— Go to definition
— Find references
* Code comprehensmn Queries and Neo4j performance
—Visualization detailed in GRADES’15 paper:
>
— Transitive closure calls, includes, etc. "Frappé: Querying the Linux Kernel
.) dependency graph”
— Reachability queries)

ORAC I—E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 10

Code search

Q foo.c

ORACLE

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 11

Code search

(n with name=‘foo.c’)

I a‘ ‘ I—E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 12

Code search

struct foo {
(n with name=‘foo.c’) int c;

¥

I E‘ ‘ I—E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 13

Code search

(c with name=‘fo0’)

-[:contains]-> struct foo {
(n with name=‘c’) '
= int c;

UNION }
(n with name=‘foo.c’)

I AC I—E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 14

Code search

(c with name=‘fo0’) struct bar {
—[{contains]—> int c;
(n with name=°‘c’) }
UNION
(n with name=‘foo.c’) typedef struct bar foo;

ORAC I—E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 15

Code search

(c with name ‘foo’) struct bar {
-[:aliases*]->()-[:contains]|-> int c;
(n with name=°‘c’) }
UNION
(n with name=‘foo.c’) typedef struct bar foo;

ORAC I—E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 16

Code search

(c with name ‘foo’) struct bar {
-[:aliases*]->()-[:contains]|-> int c;
(n with name=°‘c’) }
UNION
(n with name=‘foo.c’) typedef struct bar foo;

ORAC I—E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 17

Use cases

'\
* Code search
* Code navigation
— Go to definition
— Find references
* Code comprehensmn Queries and Neo4j performance
—Visualization detailed in GRADES’15 paper:
>
— Transitive closure calls, includes, etc. "Frappé: Querying the Linux Kernel
.) dependency graph”
— Reachability queries)

ORAC I—E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 18

Use cases

~N .

* Code search * Custom user queries
» Code navigation — (Anti) pattern detection

— Go to definition — Expose query language

— Find references
* Code comprehensmn Queries and Neo4j performance

— Visualization detailed in GRADES’15 paper:

>
— Transitive closure calls, includes, etc. ”Frappé: Querying the Linux Kernel
. . dependency graph”
— Reachability queries)

I !‘ ‘ I_E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 19

Dependency cycle

file_contains file_contains file_contains file_contains file_contains

file_contains

v

- references - - references -
references -

ORACLE

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 20

Dependency cycle

file_contains file_contains file_contains file_contains file_contains

file_contains

\ 4

references - references -
- references -

ORACLE

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 21

Dependency cycle

O-1[
:includes | uses_namespace | expands | interrogates | undefined | aliases |
uses_enumerator | has_friend | isa_type | extends | uses type | throws |

has_ret type | has_param_type | calls | may call | overridden by | declares
| reads | writes | dereferences | address of | type of | size of | align of
| casts to

1->0)

I a‘ ‘ LE Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 22

BUT

Developers working off of different ‘)
versions of the code

ORACLE

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases

Target Scenario

* 1000s of developers working from
main branch

* Changes merged regularly

* Most developers working off of
versions from the past 30 days

I E‘ CLG Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 24

Current Deployment

e Separate Neo4j instance for the most
recent 5 versions of the code

New graph generated in nightly
regression

Script on the clientto determine which
server to connect to

Deployment effort and complexity

Inefficient use of resources
— Redundant data
— Memory requirements

ORACLE

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension

tool for large C/C++ codebases

25

Current Deployment

e Separate Neo4j instance for the most n

Single logical server

with multiple versions
and efficient storage

* Inefficient use of resources “
— Redundant data

— Memory requirements

I a‘ ‘ LE Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 26

Use cases for multiple versions

* Single version use cases per version

* Code review: 2 versions
— Are there any architectural constraints being newly violated?
— Are there any new usages of deprecated methods?
— Are any methods now unused?

I E‘ Cl_e Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 27

Version selection

PATH vcalls := () -[:call WITH 1013 between fromV and toV]-> ()
SELECT path

FROM freebsd

WHERE path =

(:function WITH name='source’, 1013 between fromV and toV)

-/:vcalls*/->

(:function WITH name='sink’, 1013 between fromV and toV)
FROM freebsd@1013

WHERE path =

(:function WITH name='source') -/:calls*/-> (:function WITH name='sink")

I !‘ CLG Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 28

SELECT path

Use cases for multiple versions

* Single version use cases per version

* Code review: 2 versions
— Are there any architectural constraints being newly violated? .
— Are there any new usages of deprecated methods? Compare results

Match in each version

— Are any methods now unused?

I !‘ ‘ I_E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 29

Compare results

SELECT path
FROM freebsd@1013
WHERE path =
(:function WITH name='source') -/:calls*/-> (:function WITH name='sink"')
DIFFERENCE
SELECT path
FROM freebsd@l014
WHERE path =
(:function WITH name='source') -/:calls*/-> (:function WITH name='sink"')

SELECT DIFFERENCE path H

FROM freebsd@l913, freebsd@l014
WHERE path =
(:function WITH name='source') -/:calls*/-> (:function WITH name='sink")

: I !‘ - : E Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 30

Open Questions

* Node/Edge identity
— Supplied or derived using graph information

* Query language expressiveness
— Regular path expressions
— Multiple edge labels

* Efficient storage and querying for multiple graph versions:
— List or ideally DAG of versions
— Union, intersection, difference of results from different versions
— Query language that abstracts away versioning

I EA CLG Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases 31

FreeBSD dataset available on OTN

http://www.oracle.com/technetwork/oracle-
labs/datasets/downloads/index.html

* Includes graphs of 10.1, 10.2, 10.3
kernel + documentation

* Each graph
— Extracted from 10M LOC
— 2 million vertices
— 10 million edges

* Try it out and get in touch:

—nathan.hawes@oracle.com
david meibusch@oracle.com
ben.barham@oracle.com

ORACLE

Parallel Graph Analytics

Programming Languages and
Runtimes

Souffle

Datasets

Account Sign Out Help Country ¥ Communities ¥ |ama... ¥ |wantto... v Search Q

Products Solutions Downloads Store Support Training Partners

Oracle Technology Network > Oracle Labs > Datasets > Downloads

‘ Overview ‘ Downloads

Oracle Labs Downloads - Datasets

Oracle makes available various large data sets for free that will enable researchers to experiment
with their techniques, including benchmarking on realistic data sets. These data sets are derived from
open code sources. Each data set is typically released under the same licence as the original source

from which it was derived.

The below samples downloads are released under the FreeBSD license included in the file.

Name

Frappe
FreeBSD graph
data dataset

Description

This dataset includes the dependency graphs of the
kernel code of three versions of the FreeBSD
operating system: 10.1, 10.2, and 10.3. Each graph
has around 2 million nodes and 10 million edges and
is provided in the Oracle Big Data Spatial and Graph
flat file format. Nodes in the graph correspond to
entities in the source code (e.g. functions, structs,
macros, variables, parameters, files, directories and
executables) and edges to the references and
containment relationships between them (e.g. calls,
reads, writes, expands, compiled from, and contains).
Both are labelled with type information and properties
that provide their location in the source code,
qualifiers, and more. See the documentation included
in the distribution for details.

Download

freebsd-10.x-
graphs-otn.zip

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: a code comprehension tool for large C/C++ codebases

32

ORACLE

Graph model example

name location "
.% name_start_line
. = name_start_column
#inclyde “foo.h” foo.c S - T
° ° *o - U .
int bar(int *input) { o use_start_line
. main
function
#include “foo.h” MRS
o ° o ** .
int main(int argc, char **argv) { name_start_line
return ban(&argc); : © name start column
} T use location © - -
use_start_line
name location use_end_line

bar
function

ORACLE Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: querying the Linux kernel dependency graph

Graph model example

#define BAR(A) bar(A)

int bar(int);

##tinclude “foo.h”

int bar(int *input) {
return *input * 2;

¥

#include “foo.h” main.c

int main(int argc, char **argv) {
return BAR(&argc);
}

ORACLE

main.c
file

name_start_line
name_start_column

use_start_line
use_end_line

file contains

v
main
function

name_start_line
name_start_column

calls

use_start_line
use_end_line

v

bar
function

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: querying the Linux kernel dependency graph

35

Graph model example

#define BAR(A) ban(A)

int bar(i

name location

#include “foo.h”
int bar(int *input) {
return *input * 2;

¥

#include “foo.h”
int main(int argc, char **argv) {

return

}

BAR(&argc);

ORACLE

main.c

use location

main.c
file

name_file id
name_start_line
name_start_column
use_file id
use_start_line
use_end_line

file_contains

v
main
function

name_file id
name_start_line
name_start_column
use_file id
use_start_line
use_end_line

calls

v

bar
function

Copyright © 2015 Oracle and/or its affiliates. All rights reserved. | Frappé: querying the Linux kernel dependency graph

36

