ORACLE®

Analyzing Stack Exchange data using Property Graph in Oracle

Oskar van Rest (Oracle) Eleventh LDBC TUC Meeting, University of Texas at Austin June 8, 2018

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

Property Graph products at Oracle

Analytical and Transactional processing

- Transactional processing through database
- Analytical processing through PGX

 (an in-memory Parallel Graph analytiX engine)
- Approach
 - Read snapshot of graph data from database (or file)
 - Support delta-update from transactional changes in database
 - Process analytic requests efficiently inmemory
 - E.g. graph query (PGQL) or graph algorithm

Graph queries in Oracle Spatial and Graph (OSG)

Graph Query (PGQL)

/* find friends of friends of Clara */
SELECT fof.name
 FROM myGraph
MATCH (p:Person) -/:knows{2}/-> (fof:Person)
WHERE p.name = 'Clara'

In-memory Analyst (PGX)

- Excels in computationally intense workloads and recursive queries
- Can combine graph algorithms with graph queries

Analytical graph query

PGQL-to-SQL

- Excels in workloads with mixtures of read and write queries
- Can query data sets that don't fit into the memory of a single machine

Transactional graph query

In-memory Analyst (PGX)

Bulk Update

- Synchronizes an in-memory graph snapshot with graph changes from RDBMS
- Every x seconds/minutes/hours or upon request

PGQL – Property Graph Query Language

- Core Features
 - SQL alignment
 - SELECT .. FROM .. WHERE ..
 - Grouping and aggregation: GROUP BY, COUNT, AVG, MIN, MAX, SUM
 - Sorting: ORDER BY, ASC, DESC
 - Graph pattern matching
 - Define a high-level pattern and match all the instances in the data graph
 - Regular path expressions
 - Typically recursive in nature
 - E.g. can I reach from vertex A to vertex B via any number of edges?

Example query:

```
PATH connects_to AS (m1) -> () <- (m2)

SELECT customer.first_name, movie2.title

FROM myMovieGraph

Edge

Vertex

MATCH (customer) -[:click]-> (movie)

, (movie) -/:connects_to*/-> (movie2)

GROUP BY ..

Path

ORDER BY ..

LIMIT ..

OFFSET ..
```

Example: Network Impact Analysis

 How does network disruption impacts reachability between electric devices?

```
PATH connects to
         AS (from) \leftarrow [c1] - (connector) - [c2] \rightarrow (to)
         WHERE c1.status = 'OPEN'
            AND c2.status = 'OPEN'
  SELECT n.nickname, COUNT(m)
    FROM Electric Network
  MATCH (n:Device) -/:connects to*/-> (m:Device)
   WHERE java regexp like(n.nickname, 'Regulator')
     AND n <> m
GROUP BY n
ORDER BY COUNT(m) DESC, n.nickname
```

n.nickname	COUNT(m)
Regulator, VREG2_A Regulator, VREG4_B Regulator, VREG4_C Regulator, HVMV Sub RegA	1596 1537 1537
Regulator, HVMV_Sub_RegB	3

Query: For each 'Regulator' device, show number of reachable devices following only 'OPEN' connections.

Example result

Electric_Network

source device

OPEN[®]

OPEN

OPEN

OPEN

OPEN

OPEN

CLOSED

OPEN OPEN

Device

Connector

Connection

Built-in Analytics and Graph Mutations

 Rich set of built-in (parallel) graph algorithms

Detecting Components and Communities

Tarjan's, Kosaraju's, Weakly Connected Components, Label Propagation (w/ variants), Soman and Narang's Sparcification

Ranking and Walking

Pagerank, Personalized Pagerank, Betweenness Centrality (w/ variants), Closeness Centrality, Degree Centrality, Eigenvector Centrality, HITS, Random walking and sampling (w/ variants)

Evaluating Community Structures

Conductance, Modularity Clustering Coefficient (Triangle Counting) Adamic-Adar

Link Prediction

SALSA (Twitter's Who-to-follow)

Path-Finding

Hop-Distance (BFS) Dijkstra's, Bi-directional Dijkstra's Bellman-Ford's

Other Classics

Vertex Cover Minimum Spanning-Tree (Prim's) as well as parallel graph mutation operations

Example: Topic analysis in an Online Forum

Postings with related tags naturally creates a topic group

- Analysis Goals:
 - Identify popular topics in on-line forum
 - Understand how these topics evolve
 - Detect expert users in certain topics
- Graph Approach
 - Create graph from postings and tags
 - Apply graph partitioning (community detection) algorithms

Net-work linux kernel

Sed debian packa ging ging

Comparing to traditional ML approach (e.g. LDA), this approach often results better quality of answer, with less susceptibility to hyper-parameters

Topic (tags)

Bash, shell-script, shell, scripting

Linux, ssh, grep, linux-kernel, files, kernel, regular-expression

Networking, network-interface, dns, ip, raspberry-pi, raspbian, routing

Centos, python, yum, rpm, mysql, php, postgresql, software-installation, repository

Permissions, sudo, users, root, sort, aix, chmod, group, executable, acl

Topic (tags)

Bash, shell-script, scripting, mmv

Text-processing, awk, sed, grep, perl

Centos, rhel, yum, rpm, repository, rpmbuild, redhat-satellite, drupal

Networking, ip, routing, dhcp, tcp, router, iproute, isc-dhcp, pcap

Ssh, openssh, sshd, ssh-tunneling, key-authentication, ssh-config

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle's products remains at the sole discretion of Oracle.

ORACLE®