LOg ICBlOX Smart database for next-generation applications

o

i

5
e

3

> S 3¢
o
S

@m&%&w

£

g
(R

3

T

|

G

sy
.

(2%

. 3
e

Is

iRiye

e

%, %%
G
X

Benchmarking @LogicBlox

LogicBlox)

(

George Kollias

2014 - Athens, Greece

November 14,

LDBC TUC Meeting,

E. Two words about LogicBlox, Inc

Product

planning
prediction
optimization

Customers

Big retail companies
mostly

Other Projects
Darpa, MUSE

Choose many

Research | Data Platforms Landscape Map

OCTOBER 2014

Towards
o Apache Storm Google i
enterprise search SQLStream = ortar Treasure 0818 | AWS Microsoft
DataTorrent o ~APache IS4f . gty Qubole Data coﬂp‘iﬁe EMR HDInsight Metascale S
Lucene/Solr Feedzai = nfochimps i ratio
Towards be! Databricks/Spark
E-discovery .InfoSpP\’lefaamarkets At T-Systems Zettaset MapR _ IBM Hortonworks .
SRCH2 YAltiscale
Streams Sawvis : Biginsights Cloudera Oracle Big Data Cloud
Hastesearch Coel reco sonaer 3PP NON-relational zone =T
Autunomy {u I Ioud StreamBase o T Data Appﬁance
. acle earch_ Dataf] AWS. xPlenty & Verizon Apache Apache Apache IBM Key:
DLECa Server Attivio Kinesis _ Trafodion ‘Y’Splice Machine Tajo ive rill BigSQL CitusDB_ Hadapt SGDB ~ HPCC
Towards IBBII {nf&gf\ere DATA Starcounter Qe e General purpose
SI{M " 0 er LucidWorks - lgﬁagdpa%res MammothDB Presto Impala JethroData piyotal TeradataAster RainStor — SPECialist analytic
OBBY tri ic Big Dat: APS ASE IBM PureData i
Logentries) C3ap S}bas%SQLAnywhere HD/HAWQ for Analytics -as-a-Service
Logtogic E:’I[ef isel Microsoft SQream s BIBT2blES
Splunk F"Iogi.%l;'e Fof(gres E?(?dcalfa PureData l-?ﬁﬁA S%.Ds\xlrver 25 yc(!ch Teradata Graph
. MarkLogic E%grprise ArangoDB Percona SQL o - Document
OrientDB O M3riaDB MariaDB Orace 1B Informix Jf¢39E lgletar'ﬁé"fets’ﬁm.d —————Keyvalue stores
Ipedo XML erospike! 1 Ve atabase _DBZ Exasol OP"D ’9.1,5509‘.’]."5 g€ Actian Vector, Key value direct
- FoundationDB| YoltDB £" Mysqicluster) scaleDBSpider MR olidDBgY Kognitio access
U
- OpensSt:
XMI:rg{a"nll':aor ntcrprise Handlersocket |nﬁ"i53L omMemsQly, 5pg Clustr GenleDR gset?rl:eus Y F éugég'e‘g s iedoop
YarcData h ScaleBase StormDB a‘n trix MySQL ecosystem
Documentans assulira ScaloAre E?Ck;pl)ace IBM In OSP ere
X : 0 i .
ﬁ‘r rtable - FatDB Cc:akhb Datomic Tesora Infobright rorupg Dnzzle-l oud Databases gpp vaase |Q Advanced
UniData Yli-sparksgg, LCTDISE CockroachDB Google Cloud SQL : HP Vertica clustering/sharding
se Redi CodeFutures HP Cloud RDB AL Pivotal Greenplum New SQL databases
. Accumulo Voldemort JustOneDB ou: o
Universe | FlockDB - JumboDB TransLatti Continuent o oL onetbs
GrapheneDB | [-RethinkDB e Zimory Scale FathomDB LogicBlox amData caching
Adabas =)'y Cassandra.io 5 rekelgs% Pivotal GemFire XD AWS RDS: SpaceCurve Data grid
“Google App LevelDB Altibase HDB Galera ClearDB AWS e
|BM IMs =f0gine Datastore] HyperDex) DeepDB Web5C8|E5Qy Azure SQL Redshift
Google Clé)ud -CouchDB Altibase XDB 1 1 influxDB 1010data Search
atastore Y’ |=RavenDB i
WakandaDB o Lstardog - TokuMX = Database.com P Toogle TempolQ Bitvota ——Anppliances
= CloudBird RelectRocket Redis Labs AWS igQuiery In-memory
ObjectStore = A':ﬁan MongoDB o Memcached Cloud ElastiCache . d h s)
= AffinityDB longol O (/ s StrEAM ProCESSING
McObject = |=Trinity Compose Redis-to-go Mem(Cachier IronCache Grl cache zone
Ehcache InfiniSpan
Actian | 'S‘TARC;LBASE Iris Couch c,‘sﬁ 'ggasIgCache Bij y O E S Red Hat JBoss
Versant =] |+ Girapl MongoLab Redis Cloud Memcached Data Grid
InterSystems | = Allegrograph Redis Labs 1BM
Caché | L HypergraphDB bj DB Scal
leOut Pivotal i Oracle eXtreme
Objectivity G Infini L R AWS o8 Software GempFire S Coherence Scale
Cloudant!
AWS I;ynamoDB GridGain TIBCO Hazelcast CloudTran

LotusNotes ActiveSpaces

E. Choose many?

Specialization = result of innovation in DB community during mid-90s
Example: column stores / MonetDB / analytics
Stonebraker: “purpose-build, 10x to 100x faster than general purpose”

But
Plethora of specialized systems = increased costs

Specialized systems are only worth it if 10x-100x better

E. Choose less

“While the success of specialized columnar systems seemed to underline the end of
the "one system fits all" paradigm as proclaimed by Michael Stonebraker, this issue
clearly shows that this is still a debatable proposition. Both the Microsoft SQL Server
as well as the Openlink Virtuoso systems show that tight integration of columnar
technology in row-based systems is both possible and desirable.”

Peter Boncz

IEEE Computer Society Data Engineering Bulletin
Special Issue on "Column Store Systems"

March 2012

E. Choose one?

= many specialized technologies put together = “"One Size Fits All" system?
= they still require expertise to tune each of them

- LogicBlox engine designed to be “One Size Fits All” system...
* <10x worse than any specialized system

= ... without many tuning knobs
= transparent to the user

.
h 4

b 4

Ty

@. Underlying technologies

Language

LogiQL

Datalog variant
= Declarative

= Recursion
» Essential for handling complex graph queries
= Aggregation in Recursion
= Negation in Recursion

= Integrity constraints
- Event handling (~triggers)

= Incrementally maintained rules (~materialized views)

E. Join Algorithm(s

" Leapfrog Trigjoin: A Simple, Worst- Beyond Worst-Case Analysis for

Case Optimal Join Algorithm Joins with Minesweeper
= Todd L. Veldhuizen » Hung Q. Ngo, Dung T. Nguyen,

- ICDT '14 Christopher Ré, Atri Rudra
= http://arxiv.org/abs/1210.0481 PODS ‘14

= Multi-way join = http://arxiv.org/abs/1302.0914
= Variant of Sort-Merge Join Multi-way join

Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Beyond Worst-case Analysis for Joins with Minesweeper®
Algorithm
Hung Q. Ngo Dung T. Neuyen
Computer Science and Engineering Computer Science and Engineering
Todd L. Veldhuizen University at Buffalo, SUNY University at Buffalo, SUNY
T koo Paza Christopher Ré Atri Rudra
1349 Wost Peachiroe Strest NW Computer Science Computer Science and Engineering
‘Sute 1880, Atlanta GA 30309 Stanford University University at Buffalo, SUNY
s om ot}

ABSTRACT studied probiem i database sysems. Many wsefl queries

Recent ears ave secu devclopmcnts in oin d asone or wore full onyunc Absiact

algorithie 1n 2005, oo o, A fll conjuntive qery s con ey wih o We describe a e algorithm, Mineswocpe, (e s b 0 sy sronge e gsances than reious
et g bound on the et re. i g bl ve e A0y '

i e of 2 conpcon s, e comtris s 1 e g t

i (hcnceorts NPRR) devid a i skeoich (0.,€) = Rl), S00,0). T s cost, 1ad
I) dvied o il Qo) = A@D), 5607w, (1) aup ——
e ey il (o s € = e e
1 Q s)
sz,
1 Introduction
e ficial neligene, moiif inding. gometry.

and ofhers. Ths paper presenis a new.
data structures, such as Btrees. Under some mill technical assumptions, Mineswiceper i able to achieve sronger
Funtime guarsntees than previons join lgorithins.

i
k. o o] e
ime O(Q°[*/(n

it e ot o

uples exist. Mincsweeper maintains £3ps

o the existing g e 0(Q") mteing e AGM i
ms, being easy to absorb, simple '"HwV Tl algorithm is non-trivial, and its. HHA-VH"W ‘of tuples in the base relations cannot mmbm; o the output of the join, so Minesweeper can zﬂicumly ‘skip over

to implement, and having a concise optimality proot tation sl salysis depend on ks dop mchiney such tuples
o
Cenerat T P s s o e i e ca i a et o ot i et sy it s o be xplore, v he s 30 :a. el
seneral Terms i Nguyen, who implemented it experimentall
Nlgoriths Theory on rameork, LogicBlos e v
o mmmm.nm Leapogficoin. P
1. INTRODUCTH K suggested that leapfrog tricjoir il
::;{:.h,.‘.v,:;[‘y],...W.muv...m han NPRR o some et N e o
analyze our algorithm, in light of the breakthroughs of T
PR eforap o
i ettt g « b it
i i e el . b Webserve
ol
s b o it ol st s by o by the optinise, T qey
e e o T e A g e s i T
e g e contrast, leapfrog triejoin joins all relations si-

Copima 008 ACN XXX XXX 8500, mltancondy without producing any

E. Incremental Maintenance

Incremental Maintenance for
Leapfrog Triejoin
= Todd L. Veldhuizen

= March ‘13
= http://arxiv.org/abs/1303.5313

Each rule is incrementally
maintained

The work done to maintain the rule
is proportional to the number of

updates

Incremental Maintenance for Leapfrog Triejoin

Todd Veldhuizen*

Abstract

We present an incremental maintenance algorithm for leapfrog triejoin. The algorithm maintains rules in time proportional
(modulo log factors) to the edit distance between leapfrog tricjoin traces.

Contents

1 Introduction 2
L1 ASPIFAHON « ..ottt ittt e e e e e 3
1.2 Summary of the maintenance algorithmttt 4
1.3 Background, terminology, and notations 4

2 Maintaining head predicates 5
21 Projection-free TUlest .t e 5
22 Rules With Projection - . . « ... v oottt ettt e e e e 6
23 AGETEAHOMS oo e ettt e e e e e 6

3 Algorithms & Data structures 8
B SCANS © .ttt et e e e e e e e 8
32 INEEIVAlIOES - « . vt et et 12
33 Dela-erators« o ottt e e 13

4 Maintaining rule bodies 13
41 Sensitivity indiCes . .« .« oL e e 14
42 Sensitivity indices for predicates with multiple arguments 16

*LogicBlox Inc, tveldhuigaca.org

E. Transaction Processing

Transaction Repair: Full

Serializability Without Locks
= Todd L. Veldhuizen
= March ‘14
= http://arxiv.org/abs/1403.5645

Lock-free, scalable transaction
processing that achieves full
serializability

Transaction Repair: Full Serializability Without Locks

Todd L. Veldhunzen
LogicBlox Inc.
Two Midtown Plaza
1349 West Peachtree Street NW
Suite 1880, Atlanta GA 30309

ABSTRACT

‘Transaction Repair is a method for lock-free, scalable trans-
action processing that achieves full serializability. It demon-
strates parallel speedup even in inimical
pairs of transactions have significant read-w
the transaction repair approach, each transaction runs in
complete isolation in a branch of the database: when con-
flicts oceur, we detect and repair them. These repairs are
performed effiiently in parallel, and the net effect is that of
serial processing. Within transactions, we use no locks. This
frees users from the complications and performance hazards
of locks, and from the anomalies of sub-serializable isola-
tion levels. Our approach builds on an incrementalized vari-
ant of leapfrog tricjoin, an algorithm for existential queries
that is worst-case optimal for full conjunctive queries, and
on well-cstablished techniques from programming languages:
declarative languages, purely functional data structures, in-
cremental computation, and fixpoint equations.

1. INTRODUCTION
1.1 Scenario

Consider the following artificial scenario chosen to high-
light essential issues. A database tracks available quanti-
ties of warehouse items identified by sku number (stock-
keeping unit). Each transaction adjusts quantities for a sub-
set of skus, updating a database predicate inventory[sku] =
qty. Suppose there are n skus, and each transaction ad-
justs skus chosen independently with probability an='/%.
Most pairs of transactions will conflict when a 3 1: the
expected number of skus common to two transactions is
E[l=n- (m-"/?) = a?, an instance of the Birthday
Paradox.

Row-level locking is a bottleneck when a 3 1: since most
transactions have skus in common, they quickly encounter
lock conflicts and are put to sleep. Figure 1 (left) shows
parallel speedup of transaction throughput for a = 0.1, a =
1.0, and a = 10, using an efficient implementation of row-

level locking on a multicore machine. Note that for 10
there is no parallel speedup: there are so many conflicts that
throughput is reduced to that of a single cpu.

Our approach, which we call transaction repair. is rather
different. The LogicBlox database has been engincered from
the ground-up to use purly functional and versoned data

un with no lock-

ing, each in complete Csolation in ita own branch of the
database. We then detect conflicts and repair them. These
repairs are performed efficiently in parallel, and the net
result is a database state indistinguishable from sequen-
tial processing of transactions. With this approach, we are
able to achieve parallel speedup even when there are large
amounts of conflicts between transactions (Figure 1, right).

It does not strain credulity to report that transaction re-
pair can achieve parallel speedup for the trivial scenario just
described. Remarkably, our technique applies to arbitrary
mixtures of complex transactions.

1.2 Transaction repair

‘Transaction repair combines three major ingredients:

1. Leapfrog triejoin: Each transaction in our system con-
sists of one or more rules written in our declarative
language LogiQL, a substantial augmentation of Dat-
alog which preserves the clean lines of the original.
Each LogiQL rule is evaluated using leapfrog tricjoin,
an algorithm for existential rules for which a significant
optimality property was recently proven [14].

0

Incremental maintenance of rules: Leapfrog tricjoin
admits an efficient incremental maintenance algorithm
that is designed to achieve cost proportional to the
trace-edit distance of leapfrog triejoin traces [13]. We
employ this algorithm to repair individual rules when
conflicts occur between transactions. In operation, the
maintenance aly:nthm collects sensitivity indices that
precisely specify database state to which a rule is sensi-
tive, in the sense that modifying that state could alter
the observable outcomes of the transaction. Mainte-
nance of individual rules is extended to maintenance of
entire transactions by propagating changes through a
dependency graph of the transaction rules (Section 5).

The third ingredient is transaction repair circuits, which
we broadly outline in Section 1.4, and describe in detail in
subsequent sections.

A bottom-up exposition would begin at the level of single
rules and leapfrog triejoin, and describe how transaction re-
pair is built on these foundations. However, the novelty of

E. Intra-Query Parallelism

= Dynamic & adaptive domain o e e
d e CO m po S It I O n (~ d y n G m I C D Autorctractions D Declta-all rule
S h O rd I n g) Dl\‘lcmlinginc

= Decomposition results into many

small subdomains
= >> #cpu cores, for large enough
domains

= Each subdomain is going to require
about the same amount of work

= Query applied on subdomains in
parallel, without leaving any core
idle

E. What we benchmark

TPC-{H,DS} TPC-C, Micro.
OLAP TPC-CH, iibench OLTP
LUBM, Clique,
Path, ... Custom
Graphs Real-world

Variants

- Physical layer

= E.g.iibench: normalized VS de-normalized schema

- Logical layer
» E.g. TPC-CH aggregate queries: rules VS plain queries

- APl layer
= E.g. microbenchmarks: different API abstractions
" engine API VS
- low-level custom protocol over TCP VS
- low-level custom protocol over HTTP VS

- high-level custom protocol over HTTP

o mm e m e mmm—— =

1TPC-H

Ib4-non-entity Current
Ib4-non-entity-opt Current
Ib4-non-entity-serial = Current

Ib4-non-entity-tdx | Current

Ib4-entity Current
Ib4-entity-tdx Current
Ib4-entity-measure | Current
comparison

TPC-DS

Ib4-non-entity-tdx | Current

Ib3-non-entity-tdx | Current

Ib4-entity-tdx Current
Ib3-entity-tdx Current
comparison
Microbench
Ib-server
Smallbank

Ib-server
Shopping Cart

Ib-server

Ib-tdx
TinyBank
Ib-measure

runtime.

comparison

Historical by date

Historical by date

Historical by date

Historical by date

Historical by date

Historical by date

Historical by date

Historical by date

Historical by date

Historical by date

Historical by date

Historical by date

Historical by date

Ib-web-protobuf

Ib-web-protobuf

Ib-web-protobuf

Io-web-protobuf-no-http-control

Ib-measure-proto-params

Historical by job evaluation

Historical by job evaluation

Historical by job evaluation

Historical by job evaluation

Historical by job evaluation

Historical by job evaluation

Historical by job evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Current | Historical by date

Current | Historical by date

Current | Historical by date

Current | Historical by date

Current | Historical by date

Current | Historical by date

Current | Historical by date

Current | Historical by date

Current | Historical by date

Current | Historical by date

Current | Historical by date

Historical by date

Current analysis

Current analysis

Current analysis

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

Historical by jobset evaluation

S Y

E. Performance Monitoring

create-ws duration (sec) create-ws memory (gb)
280 16
210 12
140 8
70 4
0 0
'\\“ﬂ'0 @“‘ﬁ 9\&0 \o\"ﬂQ '\\‘\‘1° 9,\‘\""Q <z.\‘\"10 \o\‘\“°

.
h 4

b 4

Ty

@. Benchmarking Graphs

Lehigh University Benchmark (LUBM)

- Evaluates Semantic Web repositories

= Original schema is described in OWL
= All LUBM Ontology inference/constraints can be captured in LogiQL (with
rules/constraints/subtyping)

- This is not generally true

- Each dataset scale factor denotes the number of Universities in the Ontology
= Datasets grow linearly

= 14 queries over a University Ontology
» fixed resultset + a few simple joins : ql, g3, g4, 95, 97, 98, 10, q11, ql12, q13
= linearly growing resultset + 1 clique join 1 g2, 99
= linearly growing resultset + no join : g6, qlé

E. LUBM "“fixed resultset” queries

= All these queries return the same LUBM - L8 - Constant queries

resultset regardless of the scale . -

s

= GraphDB: “Going from one node to " -
s

a neighbour takes constant time” m o

B 11
B2

Duration (ms)
=

= So a “fixed resultset” query should 5
take the same time across all M\ —_—
scales in a good GraphDB o - - — o
= [tseems LB is a good o
GraphDB!

= LB: indexed binary relation (edge)
+ efficient join algorithm (LFTJ)
= constant time

E. LUBM clique queries

Clique queries are the most
complex joins in LUBM

LB & Virtuoso perform similarly

Duration (ms)

Duration (ms)

1000

750

500

250

1000

750

500

250

LUBM - LB/Virtuoso - q2
Il b4
W virtuoso7-
sparq|
0 250 500 750 1000
Scale factor
LUBM - LB/Virtuoso - q9
H b4
W virtuoso7-
sparql
100 300 500 700 900

Scale factor

E. LUBM q9

advisor

teacherof

takesCourse

LB - LogiQL

_(x,y,2) <-
Student(x),
Faculty(y),
Course(z),
advisor(x,y),
teacher0Of(y,z),

takesCourse(x,z).

SELECT ?X ?Y ?Z
WHERE
{
?X rdf:type ub:Student .
?Y rdf:type ub:Faculty .
?Z rdf:type ub:Course .
?X ub:advisor ?Y .
?Y ub:teacherOf ?Z .
?X ub:takesCourse ?Z

E. Pure clique queries

Duration (s)

600

400

200

3-clique - LiveJournal

B system hc
W it

I monetdb
s

W postgres
B virtuoso
B redshift

100 1000 10000 100000 1000000 10000000

Number of edges (log scale)

Duration (s)

600

400

200

4-clique - LiveJournal

M system hc
R

B monetdb
s

B postgres
M virtuoso
W redshift

100 1000 10000 100000 1000000 10000000

Number of edges (log scale)

“Optimal Join Algorithms: from Theory to Practice”
(paper under submission)

.
h 4

b 4

Ty

@. Academic Collaborations

E. Current and past collaborators

Berkeley (Databases - Bill Marczak)

Columbia (Statistics - Andrew Gelman, Eric Johnson, and 1 Post-doc)

Columbia (Databases- Ken Ross”)

Davis (Databases - TJ Green*, Bertram Ludascher, Daniel Zinn*, 1 PhD)

Delft (Programming Languages — Eelco Visser and 2 Post-docs*, 1 PhD*)
Georgia State University (Databases - Raj Sunderraman and 2 PhD’s* and 1 Masters*)
Georgia Tech (Machine Learning - Nick Vasiloglou and 4 PhD’s* and 2 Masters*)
Georgia Tech (Machine Learning — Polo Chau and 1 PhD)

Georgia Tech (Operations Research — Dave Goldsman and 1 PhD's)

Georgia Tech (Software Engineering - Spencer Rugaber* and 1 PhD)

Georgia Tech (Accelerators - Sudha Yalamanchili and 3 PhD’s*)

Groningen (Herman Balsters and 1 Masters)

Gent (Constraint Satisfaction — Tom Schrijvers and 1 PhD, 1 Masters)

Hasselt University (Databases - Frank Neven and 2 PhD's)

Indiana (Programming Languages — Jeremy Siek)

MIT (Stats and Operations Research - Rama Ramakrishnan),

MIT(Operations Research - Edgar Blanco)

* full-time at LogicBlox, A part-time at LogicBlox

E. Current and past collaborators

Michigan State University (Software Engineering - Kurt Stirewalt*, L Dillon and 1 Post-doc*, 1 PhD)
Neumont & INTI University (Modeling - Terry Halpin and Matt Curland)

Northwestern (Operations Research - Bob Fourer, Diego Klabjan, 1 Post-doc, 1 PhD)

Oregon State (End User Software Engineering — Chris Scaffidi, 1 PhD)

Oxford (Databases - Dan Olteanu for 1 year sabbatical)

Penn (Databases & Networking - Boon Loo, Val Tannen, and 1 PhD candidate, 1 undergrad)

Penn (Programing Languages — Benjamin Pierce and 1 PhD candidate)

Portland State (Programming Languages — Tim Sheard”)

Rice (PL and Theorem Provers - Walid Taha and 1 Post-docs* and 1 PhD*)

Rice (Databases- Chris Jermaine and 1 Post-doc*)

Stanford (Databases & ML — Chris Re, 1 Post-doc)

SUNY at Buffalo (Theory - Atri Rudra, Hung Q Ngo, 1 PhD)

University of Athens (PL - Yannis Smaragdakis and 1 Post-doc*, 4PhD*)

University of Chicago (Computational Logic & Al — Tim Hinrichs)

University of Georgia (Software Engineering — Eileen Kraemer)

Virginia Tech (Multi-paradigm programming - Eli Tilevich and 1 Masters Student)

Waterloo (Software Engineering- Todd Veldhuizen*, Krzysztof Czarnecki and 2 PhD’s* and 1 Masters)
Waterloo (Databases — Ashraf Aboulnaga and 1 PhD)

il

- %"(‘(Mf\‘)?ClU-'L“J‘(’\ «‘ujl\lv ‘w\ : J""lt\l,\.}_‘_‘:

" | e
. (J= “3L\ “1€Ain6~ c‘u : . &f Lw DAY]’“ & gy
_AC VY ”‘ IR A
- ,

vAY A1t 2 . L. ‘____>__.$u-s-—-—'{ 3

@. How we benchmark

N P

Purely-functional software

configuration management system
= composable
= maintainable

Reproducible
= Takes care of dependencies,
daemons, configuration

{

}

src ? ./lubm,

platform,

data_sets,

data_dir ?» "",

memory ? 8,

db_dir ?» ".",

db_timeout ? 3600,
query_timeout ? 1800,
features ? ["machine-type"]

benchmark body

E. Infrastructure

= Integrated into our buildfarm
= Special machines for benchmarking

- Identical to each other

= Hydra
* Nix-based distributed continuous build system
* Build tasks in Nix

- Regular benchmark runs (builds)
= After each commit
- Fine-grained regression tracking
= Once per day

- Heavier variants

= Incremental benchmark runs (builds)
= New run only if either the benchmark or the engine changed

E. Data Structures

= Fully persistent DS
» each transaction branches a version of the database
= 0(1)
= perfect read-only transactions scaling
" they don't wait write transactions

- they don’t block write transactions

= Write-optimized DS
= LSM-like trees

- High data compression rates

LUBM schema translation

OWL Schema Example

<owl:Class rdf:ID="University">
<rdfs:label>university</rdfs:label>
<rdfs:subClassOf rdf:resource="#0rganization" />

</owl:Class>

<owl:Class rdf:ID="Department">
<rdfs:label>university department</rdfs:label>
<rdfs:subClassOf rdf:resource="#0rganization" />

</owl:Class>

<owl:Class rdf:ID="ResearchGroup">
<rdfs:label>research group</rdfs:label>
<rdfs:subClassOf rdf:resource="#0rganization" />

</owl:Class>

<owl:TransitiveProperty rdf:ID="subOrganizationOf">
<rdfs:label>is part of</rdfs:label>
<rdfs:domain rdf:resource="#0rganization" />
<rdfs:range rdf:resource="#0rganization" />
</owl:TransitiveProperty>

LogiQL Schema Example

University(o) -> Organization(o).
lang:entity (" University).

Department(o) -> Organization(o).
lang:entity(Department).

ResearchGroup(o) -> Organization(o).
lang:entity (" ResearchGroup).

subOrganizationOf(ol,02) -> Organization(ol),
Organization(o02).
subOrganization(x,y) <- subOrganizationOf(x,y).
subOrganization(x,y) <- subOrganizationOf(x,z),
subOrganization(z,y). //TC

©2013. LogicBlox. All Rights Reserved.

@. WHY LB IS SO FAST?

Leapfrog Triejoin takes into
account all relations of the
join simultaneously, so it
can narrow down the
resultset much more quickly
than typical pairwise join
algorithms.

©2013. LogicBlox. All Rights Reserved.

Leapfrog Triejoin: A Simple, Worst-Case Optimal Join
Algorithm

Todd L. Veldhuizen
LogicBlox Inc.
Two Midiown Plaza
1349 West Peachtree Street NW
Suite 1880, Afanta GA 30309
tweld D { logich lox. com acm.og)

ABSTRACT

Recent years have seen exciting developments in join
algorithms. In 2008, Atserias, Grobe and Marx (bence-
forth AGM) proved a tight bound on the maximum re-
sult size of a full conjunctive query, given corstra
on the input relation sizes. In 2012, Ngo. Porat,
and Rudra (benceforth NPRR) devised konlhm
with worst-case running time proportional to the AGM
bound [E. Our commercial Datalog system LogicBlox
employs a povel join algorithi, leapfrog tricoin, which
compared conspicuously well 1o the NPRR algorithm
in preliminary benchmarks. This spurred us to analyze
the complexity of leapfrog tricjoin. In this paper we
establish that leapfrog triejoin & also worst-case opti-
mal, up to a log factor, in the sense of NPRR. We in-
prove on the results of NPRR by proving that lea
triejoin achieves worst-case optimality for finer
classes of datal ins xch s those defined by
corstraints on projection lities. We show that
NPRR & not worst-case optimal for such
ing a counterexample where kapfrog triej
O(nlogn) time, compared to ©(n') time for \PRR
On a practical sote, kaplrog triejoin can be imple-
mented using conventional data structures such as B-
trees, and extends natumlly to 3, queries. We believe
our algorithm offers a wseful addition to the existing
toolbax of join algorithms, being easy to alsorb, simple
to implement, and having a concie optimality proof.

1

General Terms
Algorithms, Theory

1. INTRODUCTION

Joiny isaf al and comprebensively -

Permission w mke dgial oc hard copies of all o puit of this work e
pesoadl or chissmom e b grasiad wihout for paovaded that copaes ar
a0t made or dearibatad foc peodk of commercal adamage ad tat copies
bear thes mocce and the full ciumoa o the fit page. To copy otherwse. 1
T, requires

republoh.
pemnissioa wmdioea ke
Copyright 200X ACM X-XXXXX-XX-X/XNXX _$5.00

studied problem indatal v uselul quer
can be formulated s one or more full conjunctive queris.
A full conjunctive query & a conjunctive query with no
projections, i.e., every variable in the body appears in

the bead 3], a numning example we se the query

defined by this Datalog rule:

Qla.b, ¢) + Ria.b), S(b.¢).T(a.c). (1)

e a.b,e are query variables (for intuition: if R =
T, then Q finds triang]

ven corstraints on the
such s |R| < <
possible query resul

wh

s of the input relations
n, what is the maximum
This question has pr

ing such querie

Atseriss, Grobe and Marx (benceforth AGM []) es-
tablished a tight bound on the size of Q: the fractional
edge cover bound (Section ZZ). For the case where
8] = |S| =|T| = n. the fractional cover bownd yieks

an algrithm with running time Of |q 2 j|u). where
fin)isa polyomial determined by the fractional cover
bound. In
NPRR [§

1, and its implem
tation and 4 s depend on rather deep machinery
developed in the paper.

The NPRR alg Lrought to our attention by
who implemented it expe
mework. LogicBlox wses a novel
tary join algorithm we eall leapfrog tricjoin. Pre-
benchmarks suggested that leapfiog triecjoin
than NPRR onsome test

analyze our algorithm, in light of the breakthroughs of
NPRR.

Conventional join implementations employ a stable
of join operators (see e.g. []) which are composed in a
tree to produce the query result; this tree is prescribed
by a query plan prodiced by the optimizer. The query
plan often relies on prodicing intermediate results. In
contrast, leapfiog trejoin joins all input relations si
multanecusly without producing any intermediate re-

@. LUBM RESULTS

- All LUBM queries except g2, g6, 99, g14, return the same resultset for all scales,

so these queries should take the same time for all scales on a good graphdb.
*» They do on Neo4j & Virtuoso. They do on LB too! So all of them are good graphdbs!
= g2, g6, 99, q14 should grow linearly since datasets scale linearly too

LUBM-LB (log scale) LUBM - Neo4; (log scale) LUBM - Virtuoso7 (log scale)
_ 80 = 80 "E\ 80
1)
& & =
£ 60 E 60 /\\/ 5 60
§ g 1S
=] S g
S 4 S 40 3 40
: - :
> 5 ~
< = @
20 < 20 W é 20
I ———
0 L — 0 0
0 30 S 70 9 0w o o = 10 3 5 70 90

Scale factor
Scale factor Scale factor

©2013. LogicBlox. All Rights Reserved.

E. Choose many?

= Using plethora of specialized systems means increased:
= development cost
= Integration cost
= maintenance cost

= Specialized systems are only worth it if 10x-100x better
* reversing Stonebraker’'s argument

