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Two words about LogicBlox, Inc

Product
▪ planning
▪ prediction
▪ optimization

Customers
▪ Big retail companies

▪ mostly

Other Projects
▪ Darpa, MUSE



Choose many



Choose many?

▪ Specialization = result of innovation in DB community during mid-90s

▪ Example: column stores / MonetDB / analytics

▪ Stonebraker: “purpose-build, 10x to 100x faster than general purpose”

But
▪ Plethora of specialized systems = increased costs

▪ Specialized systems are only worth it if 10x-100x better



Choose less

“While the success of specialized columnar systems seemed to underline the end of 
the "one system fits all" paradigm as proclaimed by Michael Stonebraker, this issue 
clearly shows that this is still a debatable proposition. Both the Microsoft SQL Server 
as well as the Openlink Virtuoso systems show that tight integration of columnar 
technology in row-based systems is both possible and desirable.”

Peter Boncz
IEEE Computer Society Data Engineering Bulletin

Special Issue on "Column Store Systems" 
March 2012



Choose one?

▪ many specialized technologies put together = “One Size Fits All” system?
▪ they still require expertise to tune each of them

▪ LogicBlox engine designed to be “One Size Fits All” system…
▪ <10x worse than any specialized system

▪ … without many tuning knobs
▪ transparent to the user



Underlying technologies



Language 

LogiQL

▪ Datalog variant
▪ Declarative

▪ Recursion
▪ Essential for handling complex graph queries
▪ Aggregation in Recursion
▪ Negation in Recursion

▪ Integrity constraints

▪ Event handling (~triggers)

▪ Incrementally maintained rules (~materialized views)



Join Algorithm(s)

▪ Leapfrog Triejoin: A Simple, Worst-
Case Optimal Join Algorithm
▪ Todd L. Veldhuizen
▪ ICDT ‘14
▪ http://arxiv.org/abs/1210.0481

▪ Multi-way join
▪ Variant of Sort-Merge Join

▪ Beyond Worst-Case Analysis for 
Joins with Minesweeper
▪ Hung Q. Ngo, Dung T. Nguyen, 

Christopher Ré, Atri Rudra
▪ PODS ‘14
▪ http://arxiv.org/abs/1302.0914

▪ Multi-way join



Incremental Maintenance

▪ Incremental Maintenance for 
Leapfrog Triejoin
▪ Todd L. Veldhuizen
▪ March ‘13
▪ http://arxiv.org/abs/1303.5313

▪ Each rule is incrementally 
maintained

▪ The work done to maintain the rule 
is proportional to the number of  
updates



Transaction Processing

▪ Transaction Repair: Full 
Serializability Without Locks
▪ Todd L. Veldhuizen
▪ March ‘14
▪ http://arxiv.org/abs/1403.5645

▪ Lock-free, scalable transaction 
processing that achieves full 
serializability



▪ Dynamic & adaptive domain 
decomposition (~dynamic 
sharding)

▪ Decomposition results into many 
small subdomains
▪ >> #cpu cores, for large enough 

domains

▪ Each subdomain is going to require 
about the same amount of work

▪ Query applied on subdomains in 
parallel, without leaving any core 
idle 

Intra-Query Parallelism



Benchmarking



What we benchmark

Graphs

LUBM, Clique,
Path, ...

OLAP

TPC-{H,DS}

OLTP

TPC-C, Micro.

TPC-CH, iibench

Custom

Real-world



Variants

▪ Physical layer
▪ E.g. iibench: normalized VS de-normalized schema

▪ Logical layer
▪ E.g. TPC-CH aggregate queries: rules VS plain queries

▪ API layer
▪ E.g. microbenchmarks: different API abstractions

▪ engine API VS 

▪ low-level custom protocol over TCP VS 

▪ low-level custom protocol over HTTP VS 

▪ high-level custom protocol over HTTP



 

Reporting Site



create-ws duration (sec) create-ws memory (gb)

Performance Monitoring



Benchmarking Graphs



Lehigh University Benchmark (LUBM)

▪ Evaluates Semantic Web repositories

▪ Original schema is described in OWL
▪ All LUBM Ontology inference/constraints can be captured in LogiQL (with 

rules/constraints/subtyping)
▪ This is not generally true

▪ Each dataset scale factor denotes the number of Universities in the Ontology
▪ Datasets grow linearly

▪ 14 queries over a University Ontology
▪ fixed resultset                   + a few simple joins : q1, q3, q4, q5, q7, q8, q10, q11, q12, q13
▪ linearly growing resultset + 1 clique join : q2, q9
▪ linearly growing resultset + no join : q6, q14



▪ All these queries return the same 
resultset regardless of the scale

▪ GraphDB: “Going from one node to 
a neighbour takes constant time”

▪ So a “fixed resultset” query should 
take the same time across all 
scales in a good GraphDB
▪ It seems LB is a good 

GraphDB!

▪ LB: indexed binary relation (edge) 
+ efficient join algorithm (LFTJ)
▪ constant time

LUBM “fixed resultset” queries



▪ Clique queries are the most 
complex joins in LUBM

▪ LB & Virtuoso perform similarly

LUBM clique queries



_(x,y,z) <-

    Student(x),

    Faculty(y),

    Course(z),

    advisor(x,y),

    teacherOf(y,z),

    takesCourse(x,z).

Virtuoso - SparQL

SELECT ?X ?Y ?Z

WHERE

{ 

?X rdf:type ub:Student .

?Y rdf:type ub:Faculty .

?Z rdf:type ub:Course .

?X ub:advisor ?Y .

?Y ub:teacherOf ?Z .

?X ub:takesCourse ?Z

}

x

y

z

advisor

takesCourse

teacherOf

LUBM q9

LB - LogiQL



“Optimal Join Algorithms: from Theory to Practice” 
(paper under submission)

Pure clique queries



Academic Collaborations



Current and past collaborators

Berkeley (Databases - Bill Marczak)
Columbia (Statistics - Andrew Gelman, Eric Johnson, and 1 Post-doc)
Columbia (Databases- Ken Ross^)
Davis (Databases - TJ Green*, Bertram Ludascher, Daniel Zinn*, 1 PhD)
Delft (Programming Languages – Eelco Visser and 2 Post-docs*, 1 PhD*)
Georgia State University (Databases - Raj Sunderraman and 2 PhD’s* and 1 Masters*)
Georgia Tech (Machine Learning - Nick Vasiloglou and 4 PhD’s* and 2 Masters*)
Georgia Tech (Machine Learning – Polo Chau and 1 PhD)
Georgia Tech (Operations Research – Dave Goldsman and 1 PhD’s)
Georgia Tech (Software Engineering - Spencer Rugaber* and 1 PhD)
Georgia Tech (Accelerators - Sudha Yalamanchili and 3 PhD’s*)
Groningen (Herman Balsters and 1 Masters)
Gent (Constraint Satisfaction – Tom Schrijvers and 1 PhD, 1 Masters)
Hasselt University (Databases - Frank Neven and 2 PhD’s)
Indiana (Programming Languages – Jeremy Siek)
MIT (Stats and Operations Research - Rama Ramakrishnan),
MIT(Operations Research - Edgar Blanco)

▪ * full-time at LogicBlox, ^ part-time at LogicBlox



Current and past collaborators

Michigan State University (Software Engineering - Kurt Stirewalt*, L Dillon and 1 Post-doc*, 1 PhD)
Neumont & INTI University (Modeling - Terry Halpin and Matt Curland)
Northwestern (Operations Research - Bob Fourer, Diego Klabjan, 1 Post-doc, 1 PhD)
Oregon State (End User Software Engineering – Chris Scaffidi, 1 PhD)
Oxford  (Databases - Dan Olteanu for 1 year sabbatical)
Penn (Databases & Networking - Boon Loo, Val Tannen, and 1 PhD candidate, 1 undergrad)
Penn (Programing Languages – Benjamin Pierce and 1 PhD candidate)
Portland State (Programming Languages – Tim Sheard^)
Rice (PL and Theorem Provers - Walid Taha and 1 Post-docs* and 1 PhD*)
Rice (Databases- Chris Jermaine and 1 Post-doc*)
Stanford (Databases & ML – Chris Re, 1 Post-doc)
SUNY at Buffalo (Theory - Atri Rudra, Hung Q Ngo, 1 PhD)
University of Athens (PL - Yannis Smaragdakis and 1 Post-doc*, 4PhD*)
University of Chicago (Computational Logic & AI – Tim Hinrichs)
University of Georgia (Software Engineering – Eileen Kraemer)
Virginia Tech (Multi-paradigm programming - Eli Tilevich and 1 Masters Student)
Waterloo (Software Engineering- Todd Veldhuizen*, Krzysztof Czarnecki and 2 PhD’s* and 1 Masters)
Waterloo (Databases – Ashraf Aboulnaga and 1 PhD)



THANK YOU. QUESTIONS?



How we benchmark

Nix

▪ Purely-functional software 
configuration management system
▪ composable
▪ maintainable

▪ Reproducible
▪ Takes care of dependencies, 

daemons, configuration

lubm.nix

{ 

  src ? ./lubm,

  platform,

  data_sets,

  data_dir ? "",

  memory ? 8,

  db_dir ? ".",

  db_timeout ? 3600,

  query_timeout ? 1800,

  features ? ["machine-type"]

}:

{

  # benchmark body

}



Infrastructure

▪ Integrated into our buildfarm
▪ Special machines for benchmarking

▪ Identical to each other

▪ Hydra
▪ Nix-based distributed continuous build system
▪ Build tasks in Nix

▪ Regular benchmark runs (builds)
▪ After each commit

▪ Fine-grained regression tracking

▪ Once per day
▪ Heavier variants

▪ Incremental benchmark runs (builds)
▪ New run only if either the benchmark or the engine changed



Data Structures

▪ Fully persistent DS
▪ each transaction branches a version of the database

▪ O(1)

▪ perfect read-only transactions scaling
▪ they don’t wait write transactions

▪ they don’t block write transactions

▪ Write-optimized DS
▪ LSM-like trees

▪ High data compression rates



LUBM schema translation

OWL Schema Example

  <owl:Class rdf:ID="University">

  <rdfs:label>university</rdfs:label>

  <rdfs:subClassOf rdf:resource="#Organization" />

</owl:Class>

<owl:Class rdf:ID="Department">

  <rdfs:label>university department</rdfs:label>

  <rdfs:subClassOf rdf:resource="#Organization" />

</owl:Class>

<owl:Class rdf:ID="ResearchGroup">

  <rdfs:label>research group</rdfs:label>

  <rdfs:subClassOf rdf:resource="#Organization" />

</owl:Class>

<owl:TransitiveProperty rdf:ID="subOrganizationOf">

  <rdfs:label>is part of</rdfs:label>

  <rdfs:domain rdf:resource="#Organization" />

  <rdfs:range rdf:resource="#Organization" />

</owl:TransitiveProperty>

University(o) -> Organization(o).
lang:entity(`University).

Department(o) -> Organization(o).
lang:entity(`Department).

ResearchGroup(o) -> Organization(o).
lang:entity(`ResearchGroup).

subOrganizationOf(o1,o2) -> Organization(o1), 
                            Organization(o2).
subOrganization(x,y) <- subOrganizationOf(x,y).
subOrganization(x,y) <- subOrganizationOf(x,z),
                        subOrganization(z,y). //TC

LogiQL Schema Example

©2013. LogicBlox. All Rights Reserved.



WHY LB IS SO FAST?

▪ Leapfrog Triejoin takes into 
account all relations of the 
join simultaneously, so it 
can narrow down the 
resultset much more quickly 
than typical pairwise join 
algorithms.

©2013. LogicBlox. All Rights Reserved.



LUBM RESULTS

▪ All LUBM queries except q2, q6, q9, q14, return the same resultset for all scales, 
so these queries should take the same time for all scales on a good graphdb.
▪ They do on Neo4j & Virtuoso. They do on LB too! So all of them are good graphdbs!
▪ q2, q6, q9, q14 should grow linearly since datasets scale linearly too

©2013. LogicBlox. All Rights Reserved.



Choose many?

▪ Using plethora of specialized systems means increased:
▪ development cost
▪ integration cost
▪ maintenance cost

▪ Specialized systems are only worth it if 10x-100x better
▪ reversing Stonebraker’s argument


