

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PGQL – Status Update
And Comparison to LDBC’s Graph QL proposals

Oskar van Rest
Oracle
February 9, 2017

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

3

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to PGQL

What’s New in PGQL 1.0 since PGQL 0.9?

PGQL and LDBC’s Graph QL proposals

Future directions

1

2

3

4

4

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to PGQL

What’s New in PGQL 1.0 since PGQL 0.9?

PGQL and LDBC’s Graph QL proposals

Future directions

1

2

3

4

5

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Introduction to PGQL

6

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• Core Features

– SQL alignment
• SELECT .. FROM .. WHERE ..

• Grouping and aggregation: GROUP BY, AVG, MIN,
MAX, SUM

• Solution modifiers: ORDER BY, LIMIT, OFFSET

– Graph pattern matching
• Define a high-level pattern, find all instances

• This corresponds to basic SQL

– (Recursive) path queries
• Can I reach from vertex A to vertex B via some

number of edges?

• Use cases: detecting circular cash flow (fraud
detection), network impact analysis, etc.

• Specification available online

• Implementation (PGQL 1.0)
– Parallel Graph Analytics (PGX)

• PGX is Oracle‘s in-memory graph analytics engine

• Component of Oracle Big Data Spatial and Graph

– Open-sourced PGQL front-end (Apache 2.0 License)

PGQL Graph Query Language - Overview

7

http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics

http://www.oracle.com/technetwork/database/database-technologies/bigdata-spatialandgraph

https://github.com/oracle/pgql-lang

pgql-lang.org/spec/1.0
http://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytics
http://www.oracle.com/technetwork/database/database-technologies/bigdata-spatialandgraph
https://github.com/oracle/pgql-lang/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PGQL 1.0

Example query

SELECT v3.name, v3.age
FROM socialNetworkGraph
WHERE
(v1:Person WITH name = ‘Amber’) –[:friendOf]-> (v2:Person) –[:knows]-> (v3:Person)

query

Query: Find all people who are known
by friends of ‘Amber’.

socialNetwork
Graph

100:Person
name = ‘Amber’
age = 25

200:Person
name = ‘Paul’
age = 30

300

:Person
name = ‘Heather’
age = 27

777
:Company
name = ‘Oracle’
location =
‘Redwood City’

:worksAt{1831}
startDate = ’09/01/2015’

:friendOf{1173}

:knows{2200}

:friendOf {2513}
since = ’08/01/2014’

8

https://github.com/oracle/pgql-lang/

http://pgql-lang.org/

• Find all instances of a given pattern/template in the data graph

https://github.com/oracle/pgql-lang
https://github.com/oracle/pgql-lang/
http://pgql-lang.org/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PGQL 1.0

Example query

SELECT v3.name, v3.age
FROM socialNetworkGraph
WHERE
(v1:Person WITH name = ‘Amber’) –[:friendOf]-> (v2:Person) –[:knows]-> (v3:Person)

query

Query: Find all people who are known
by friends of ‘Amber’.

socialNetwork
Graph

100:Person
name = ‘Amber’
age = 25

200:Person
name = ‘Paul’
age = 30

300

:Person
name = ‘Heather’
age = 27

777
:Company
name = ‘Oracle’
location =
‘Redwood City’

:worksAt{1831}
startDate = ’09/01/2015’

:friendOf{1173}

:knows{2200}

:friendOf {2513}
since = ’08/01/2014’

9

https://github.com/oracle/pgql-lang/

http://pgql-lang.org/

• Find all instances of a given pattern/template in the data graph

https://github.com/oracle/pgql-lang
https://github.com/oracle/pgql-lang/
http://pgql-lang.org/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PGQL 1.0

Regular Path Queries (RPQs)

10

• Matching a pattern
repeatedly
– Define a PATH pattern at the top

of a query

– Refer to it in the WHERE clause
(pattern composition)

– Use Kleene star (*) for repeated
matching

:Person
name = ‘Amber’
age = 29

100

:Person
name = ‘Dwight’
age = 15

400

:Person
name = ‘Paul’
age = 64

200

:Person
name = ‘Retta’
age = 43

300

:Person
name = ‘Andy’
age = 12

500

0 1

:likes
since = ‘2016-04-04’

:likes
since = ‘2016-04-04’

2

4

3

5

7

6
:likes
since = ‘2013-02-14’

:likes
since = ‘2015-11-08’

:has_father

:has_father

:has_mother

:has_mother

snGraph

PATH has_parent := (child) –[:has_father|has_mother]-> (parent)
SELECT x.id(), y.id(), ancestor.id()
WHERE

(x:Person WITH name = 'Andy') –/:has_parent*/-> (ancestor),
(y) -/:has_parent*/-> (ancestor),
x != ancestor AND y != ancestor AND x != y

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PGQL 1.0

Regular Path Queries (RPQs)

11

:Person
name = ‘Amber’
age = 29

100

:Person
name = ‘Dwight’
age = 15

400

:Person
name = ‘Paul’
age = 64

200

:Person
name = ‘Retta’
age = 43

300

:Person
name = ‘Andy’
age = 12

500

0 1

:likes
since = ‘2016-04-04’

:likes
since = ‘2016-04-04’

2

4

3

5

7

6
:likes
since = ‘2013-02-14’

:likes
since = ‘2015-11-08’

:has_father

:has_father

:has_mother

:has_mother

snGraph

x.id() y.id() ancestor.id()

500 300 200

500 400 200

500 400 300

Result set

• Matching a pattern
repeatedly
– Define a PATH pattern at the top

of a query

– Refer to it in the WHERE clause
(pattern composition)

– Use Kleene star (*) for repeated
matching

PATH has_parent := (child) –[:has_father|has_mother]-> (parent)
SELECT x.id(), y.id(), ancestor.id()
WHERE

(x:Person WITH name = 'Andy') –/:has_parent*/-> (ancestor),
(y) -/:has_parent*/-> (ancestor),
x != ancestor AND y != ancestor AND x != y

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PGQL 1.0

Example: Network Impact Analysis

• How does a network disruption impacts
reachability between devices?

12

Device

OPEN

OPEN

OPEN

OPEN
OPEN

OPENOPEN

OPEN

OPEN OPEN

OPEN

OPEN OPEN

OPEN OPENCLOSED

CLOSED

source deviceElectric Network

OPEN

OPEN

Connector

Connection

PATH connects_to :=
(from) <-[WITH status = 'OPEN']- (connector) -[WITH status = 'OPEN']-> (to)

SELECT n.nickname, COUNT(m)
WHERE

(n:Device WITH nickname =~ 'Regulator') -/:connects_to*/-> (m:Device),
n != m

GROUP BY n
ORDER BY COUNT(m) DESC, n.nickname

| n.nickname | COUNT(m) |

"Regulator, VREG2_A"	1596
"Regulator, VREG4_B"	1537
"Regulator, VREG4_C"	1537
"Regulator, HVMV_Sub_RegA"	3
"Regulator, HVMV_Sub_RegB"	3

Query: For each ‘Regulator’ device,
show number of reachable devices
following only ‘OPEN’ connections.

Result

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PGQL 1.0

Regular Path Queries
Comparison to SQL

13

WITH temp(device_id, device_name) AS (
-- Anchor member:
SELECT device_id, name
FROM Devices
WHERE name = 'Regulator, HVMV_Sub_RegB‘

UNION ALL
-- Recursive member:
SELECT Devices.device_id, Devices.name
FROM temp, Devices, Connections conn1,

Connections conn2, Connectors
WHERE temp.device_id = conn1.to_device_id

AND conn1.from_connector_id = Connectors.connector_id
AND Connectors.connector_id = conn2.from_connector_id
AND conn2.to_device_id = Devices.device_id
AND temp.device_id != Devices.device_id)

CYCLE device_id SET cycle TO 1 DEFAULT 0
SELECT DISTINCT device_name
FROM temp
WHERE cycle = 0
AND device_name != 'Regulator, HVMV_Sub_RegB'

PATH connects_to := (from) <- (connector) -> (to)
SELECT y.name
WHERE (x:Device) -/:connects_to*/-> (y:Device),

x.name = 'Regulator, HVMV_Sub_RegB'),
x != yPGQL

SQL

Query:
Which devices are connected

transitively to device
'Regulator, HVMV_Sub_RegB‘?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to PGQL

What’s New in PGQL 1.0 since PGQL 0.9?

PGQL and LDBC’s Graph QL proposals

Future directions

1

2

3

4

14

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What’s New in PGQL 1.0 since PGQL 0.9?

15

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

What’s New in PGQL 1.0 since PGQL 0.9?

• Regular Path Queries (RPQs) (see previous slides)

– PGQL currently supports reachability RPQs only

– Future versions will have min-hop/weighted shortest path finding RPQs

• Changed pattern matching semantic: isomorphism => homomorphism
– Isomorphism has the restriction that two query vertices should not map to the same

data vertex

16

SELECT f2.name
WHERE (f1:Function WITH name = ‘factorial’) -[:calls]-> (f2)

f2.name

‘factorial’

‘factorialHelper’

Result with isomorphism

f2.name

‘factorialHelper’

Result with homomorphism

:Function
name = ‘factorial’

100

:Function
name = ‘factorial_helper’

200
1 :calls

codeGraph
0

:calls

Query: “which functions are
called by function ‘factorial’?”

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PGQL 0.9 => PGQL 1.0

Isomorphism => homomorphism

• Isomorphism semantic found to be more intuitive for first-time users

– (not based on empirical study)

– Homomorphism may return more results than expected (e.g. “find friends of friends of ‘John’” returns ‘John’)

• Isomorphism has limitations (see previous slide)

• Both have the same worst-case time complexity: O(nk) (n = num. data vertices, k = num. query vertices)

– However, if we apply isomorphism to recursive path queries, things blow up

• Also, isomorphism doesn’t translate well to/from SQL, but homomorphism does

• Hence, PGQL is now based on homomorphism

– We also plan to introduce an allDifferent(v1, v2, …) function to avoid large numbers of non-equality
constraints: allDifferent(x, y, z) instead of x != y, x != z, y != z

17

According to several publications, graph querying
comes down to subgraph isomorphism, but this is
not always the case.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to PGQL

What’s New in PGQL 1.0 since PGQL 0.9?

PGQL and LDBC’s Graph QL proposals

Future directions

1

2

3

4

18

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

PGQL and LDBC’s Graph QL proposals

19

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Pattern matching in the FROM clause

• Idea came from other task force
members

– Aligns better with SQL
• Labels ‘Person’ and ‘likes’ correspond to table

names in SQL’s FROM clause

• WHERE clause only contains filters like in SQL
and no graph pattern

• Disadvantage is that negation of
graph patterns is not so concise:

20

SELECT *
WHERE
(x:Person WITH name = ‘Ann’) –[e:likes]-> (y),
x.age = y.age

SELECT *
WHERE
(x) –> (y),
NOT EXISTS { (x) <- (y) }

SELECT *
FROM (x) –> (y)
WHERE
NOT EXISTS (
SELECT *
FROM (x) <- (y)

)

SPARQL-like

SQL-like
SELECT *
FROM (x:Person) –[e:likes]-> (y)
WHERE
x.name = ‘Ann’ AND x.age = y.age

SPARQL-like

SQL-like

Query: “find all edges that
don’t have a reverse edge”

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Path queries: comparing data along paths

Regular Expressions with Memory
(REM) [1]

• REMs are Regular Path Queries (RPQs)
with registers to store properties of
vertices/edges along paths

– Stored properties can be used later on during
traversal to compare against other properties

• Most expressive (powerful) RPQ
formalism with same complexity as usual
RPQs

• Hard to come up with a syntax for REMs
that is declarative

Idea proposed for PGQL / Graph QL

• PATH patterns with WHERE clause for
data comparison

21

[1] http://homepages.inf.ed.ac.uk/s1058408/data/jcss.pdf

PATH eq_voltage_hop:=
(n:Device) -> (m:Device)
WHERE n.voltage = m.voltage

SELECT y.name
FROM (x) –/:eq_voltage_hop+/-> (y)
WHERE x.name = ‘power_generator_x29’

• Supports a subset of REM, but is
declarative

• Paths can be processed in either direction
(either from x to y or from y to x)

Query: “find devices that are reachable from ‘power_generator_x29’
via a path such that all the devices along the path have equal voltage”

http://homepages.inf.ed.ac.uk/s1058408/data/jcss.pdf

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Recent proposals from LDBC’s Graph QL work force

Graph QL proposal #1

• Unified data model: tables with
cells that hold graphs

– Cells may also hold paths, vertices,
edges, Strings, Integers, etc.

Graph QL proposal #2

• Unified data model: graphs
encoded as two tables

– One row per vertex/edge

22

v_id name age

100 ‘Ann’ NULL

200 ‘Amber’ 21

e_id v1_id v2_id weight

0 100 200 10.0

my_graph_vT my_graph_eT

:Person
name = ‘Amber’
age = 21

200
:Person
name = ‘Ann’ 100 0

:likes
weight = 10.0

my_graph

This is like PGQL
• i.e. tables with complex data types as output
• but… PGQL has graphs (instead of tables) as input

• Seems practical
• But not a unified data model

– Still figuring out how to encode paths

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• Specify graph production pattern in SELECT

– Pattern may contain existing vertices / edges / paths

– Pattern may contain new vertices / edges / properties (not shown here)

Not part of PGQL 1.0

Graph Construction in PGQL

SELECT { (x) –[e]-> (y) } AS newGraph
FROM (x) –[e:has_father]-> (y) IN GRAPH snGraph

:Person
name = ‘Amber’
age = 29

100

:Person
name = ‘Dwight’
age = 15

400

:Person
name = ‘Paul’
age = 64

200

:Person
name = ‘Retta’
age = 43

300

:Person
name = ‘Andy’
age = 12

500

0 1

:likes
since = ‘2016-04-04’

:likes
since = ‘2016-04-04’

2

4

3

5

7

6
:likes
since = ‘2013-02-14’

:likes
since = ‘2015-11-08’

:has_father

:has_father

:has_mother

:has_mother

snGraph

y

x

x

z

newGraph

:Person
name = ‘Paul’
age = 64

200
:Person
name = ‘Amber’
age = 29

100 2
:has_father

:Person
name = ‘Paul’
age = 64

200
:Person
name = ‘Retta’
age = 43

300 3
:has_father

Query result: table with graphs

Query: “construct new graphs,
each containing one ‘has_father’
edge from the input graph

23

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

• The FUSION aggregate merges a set of graphs into a
single (large) graph

24

Not part of PGQL 1.0

New aggregate: FUSION (may be used in combination with GROUP BY)

SELECT FUSION({ (x) –[e]-> (y) }) AS newGraph
FROM (x) –[e:has_father]-> (y) IN GRAPH snGraph

newGraph

:Person
name = ‘Amber’
age = 29

100

:Person
name = ‘Paul’
age = 64

200
2

3

:has_father

:has_father

:Person
name = ‘Retta’
age = 43

300

:Person
name = ‘Amber’
age = 29

100

:Person
name = ‘Dwight’
age = 15

400

:Person
name = ‘Paul’
age = 64

200

:Person
name = ‘Retta’
age = 43

300

:Person
name = ‘Andy’
age = 12

500

0 1

:likes
since = ‘2016-04-04’

:likes
since = ‘2016-04-04’

2

4

3

5

7

6
:likes
since = ‘2013-02-14’

:likes
since = ‘2015-11-08’

:has_father

:has_father

:has_mother

:has_mother

snGraph

y

x

x

z

Query result: table with graphs

Query: “construct a new graph
containing all the ‘has_father’
edges from the input graph

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 25

Not part of PGQL 1.0

Composition of queries that return graphs

• PGQL takes a graph as input and returns a table as output (not a unified data model)

• Yet, can naturally compose queries that return graphs:

SELECT COUNT(*)
FROM (n) IN GRAPH (
SELECT FUSION({(a) –[e]-> (b)})
FROM (a) –[e:likes]-> (b) IN GRAPH snGraph

)

COUNT(*)

4

:Person
name = ‘Amber’
age = 29

100

:Person
name = ‘Dwight’
age = 15

400

:Person
name = ‘Paul’
age = 64

200

:Person
name = ‘Retta’
age = 43

300

:Person
name = ‘Andy’
age = 12

500

0 1

:likes
since = ‘2016-04-04’

:likes
since = ‘2016-04-04’

2

4

3

5

7

6
:likes
since = ‘2013-02-14’

:likes
since = ‘2015-11-08’

:has_father

:has_father

:has_mother

:has_mother

snGraph

Query result:

Inner query: returns a graph that contains
only ‘likes’ edges.
Outer query: returns the number of
vertices in that graph.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Introduction to PGQL

What’s New in PGQL 1.0 since PGQL 0.9?

PGQL and LDBC’s Graph QL proposals

Future directions

1

2

3

4

26

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Future directions

27

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Future Directions

Querying Multiple Graphs

• Open Question: How to refer to input graphs?

–Option 1: Refer to each graph by name (like SPARQL)

–Option 2: Refer to a column of an input table containing an arbitrary number of
graphs (like LDBC’s Graph QL proposal #1)

• Open Question: How to connect data from different graphs?
–Option 1: Merge graphs together first (fusion(g1, g2, g3, …)), then do pattern matching

(similar to SPARQL)

–Option 2: Match different parts of the pattern on different input graphs, then join on
certain properties (like LDBC’s Graph QL proposal #2)

28

Not really the typical
use case we see

Works well for RDF graphs where vertices have UUIDs.
May not work for Property Graphs.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Future Directions

SQL Extension

• Introduce ‘pattern matching queries’ in SQL

– Need standard way(s) of storing graphs as tables (two options below) and a way to access such
graphs in SQL (e.g. using a function twoTablesToGraph(vT, eT))

29

SELECT Person.first_name
FROM Person
WHERE EXISTS (

SELECT *
FROM (n) –[:follows]-> (m) IN GRAPH twoTablesToGraph(twitter_vT, twitter_eT)
WHERE Person.first_name = n.name AND m.name = ‘Angela Merkel’

)

v_id prop_name string_value int_value

100 ‘name’ ‘John’ NULL

200 ‘name’ ‘Amber’ NULL

100 ‘age’ NULL 21

v_id name age

100 ‘John’ NULL

200 ‘Amber’ 21

Option 2: vT/eT tables with one row per property
(handles sparse and unstructured data well)

Option 1: vT/eT tables with one row per vertex/edge
(handles dense and structured data well)

Query: “find people who follow
Angela Merkel on Twitter”

Standard SQL query

Pattern matching SQL query

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

30

