
!"#$%&'()*%+,-'.%!(/0,(0-%
1(23%45'6-

!"#"$%&'()*+"&, -". /01&2(("345

!)(#6(+7&8#44(%&9*35":&/0&;+(%<(4

Aim	

• Study	query	languages	for	graph	
data	management	systems,	
specifically	systems	storing	
“Property	Graph”	data
• Query	language	should	cover	the	
needs	of	important	use	cases:	
social	network	benchmark,	
interactive	and	BI	workloads

• Members
• Renzo	Angles,	Universidad	de	Talca
• Marcelo	Arenas,	PUC	Chile	- task	force	lead
• Pablo	Barceló,	Universidad	de	Chile
• Peter	Boncz,	Vrije Universiteit Amsterdam
• George	Fletcher,	Eindhoven	University	of	
Technology

• Claudio	Gutierrez,	Universidad	de	Chile
• Tobias	Lindaaker,	Neo	Technology
• Marcus	Paradies,	SAP
• Raquel	Pau,	UPC
• Arnau Prat,	UPC	/	Sparsity
• Juan	Sequeda,	Capsenta
• Oskar	van	Rest,	Oracle	Labs
• Hannes	Voigt,	TU	Dresden
• Yinglong Xia,	IBM

Motivation

• Currently	Babel	of	graph	QLs	with	diversity	in	syntax	and	semantics
• PGQL:	iso/homomorphism
• Cypher:	“edge”	isomorphism
• Gremlin:	homomorphism
• SPARQL:	homomorphism
• Reachability	queries	vs.	path	queries

• Practical	consequences
• Applications	are	not	portable
• Hard	to	define	benchmarks
• Hard	to	compare	Graph	DBMS

• Standard
• Prevents	vendor	lock-in
• Fosters	true	performance	competition	à improvement	of	systems

[By	Pieter	Brueghel	the	Elder	(1526/1530–1569)]

Closed	Query	Languages

SQL

Graph
Query

Language*

however	…

SQL

…???

…

[xkcd,	https://xkcd.com/888/]

[xkcd,	https://xkcd.com/724/]

$'522%;*-%$5/6-);%$*(29%?8;*%$59)52(@8=8;.

! 0%(+%&"#?6&#J*$"h
! N))?3B#"3*4&(4"3"3(%
! ([5[&<3%B$%%3*4%:&"*)3B%:&

B*AA$43"3(%:&("B[
! S36(?=&A$?"3)?(&

#J%"+#B"3*4 ?(H(?%

! K#%(&<#"#&B*4"#34%h
! Q34(&5+#4$?#+&<#"#
! S*I&#J%"+#B"3*4
! R[5[&34<3H3<$#?&

"I3""(+&A(%%#5(%:&
+("I(("&+(?#"3*4%.3)%:&
("B[

K#%(&<#"#&B*4"#34%h
Q34(&5+#4$?#+&<#"#

"I3""(+&A(%%#5(%:&
+("I(("&+(?#"3*4%.3)%:&
"I3""(+&A(%%#5(%:&
+("I(("&+(?#"3*4%.3)%:&
"I3""(+&A(%%#5(%:&

([5[&<3%B$%%3*4%:&"*)3B%:&

[Martin Grandjean, https://commons.wikimedia.org/wiki/File:Social_Network_Analysis_Visualization.png, 2014]

[http://nodexlgraphgallery.org/Pages/Graph.aspx?graphID=70790]

Query
language

main means
to bridge
concept
chasm

Users talk in high level concepts ! Data captured in low level concepts
" Concept chasm

A80*B=-<-=%"-280/%&5(=2

! G$(+=&S#45$#5(&@*+&D+*)(+"=&E+#).&2*<(?
! D*I(+&B*A)#+#J?(&"*&!GS&-a

! 1*A)*%#J3?3"=&^?#45$#5(&B?*%(<&*H(+&<#"#&A*<(?e
! W+".*5*4#?&?#45$#5(&B*4B()"%

! D#".%&#%&@3+%"&B?#%%&B3"3M(4

1*A)*%#J3?3"=&^?#45$#5(&B?*%(<&*H(+&<#"#&A*<(?e

3<7&_ac
4#A(7&V$#4&!(>$(<#

D(+%*4
64*I%

%34B(7&ad_d
3<7&l`b
4#A(7&2#+B(?*&N+(4#%

D(+%*4

Where	are	we	now?

$(;(=50%5E%"-28'->%+,-'.%4,/6;85/(=8;8-2

! N<P#B(4B=&G$(+3(%
! E+#).&D#""(+4&2#"B.345
! T#H35#"3*4#?&G$(+3(%
! N55+(5#"(&G$(+3(%
! !$J&>$(+3(%

Adjacency	queries

• Property	access
• Get	the	firstName and	lastName of	a	person	having	email	"$email”

• Neighborhood	of	a	node
• Get	the	firstName and	lastName of	the	friends	of	a	person	identified	by	email	
"$email".

• K-neighborhood	of	a	node
• Get	the	email,	firstName and	lastName of	friends	of	the	friends	of	a	person	
having	email	"$email"	(excluding	the	start	person)	(i.e.	get	a	list	of	
recommended	friends)	(directed	2-neighborhood)

Graph	Pattern	Matching

• Join
• Get	the	creationDate and	content	of	the	
messages	created	by	a	person	identified	by	
email	"$email1"	and	commented	by	another	
person	identified	by	"$email2".

• Union
• Get	the	creationDate and	content	of	the	
messages	either	created	or	liked	by	a	person	
identified	by	email	"$email".

• Intersection
• Get	the	email,	firstName and	lastName of	the	
common	friends	between	two	persons	
identified	by	emails	"$email1"	and	"$email2"	
respectively.

• Difference
• Given	two	friends	identified	by	emails	
"$email1"	and	"$email2"	respectively,	get	the	
email,	firstName and	lastName of	the	friends	
of	the	second	person	which	are	not	friends	of	
the	first	person	(this	questions	is	relevant	for	
friendship	recommendations).

• Optional
• Given	a	person	identified	by	email	"$email",	
get	the	title	of	all	the	messages	created	by	
such	person,	and	the	content	of	the	first	
comment	replying	each	message	(if	it	exists).

• Filter
• Get	the	properties	of	the	people	whose	
firstName includes	the	string	"xxx"	(it	implies	
use	of	wildcards).

Navigational	queries

• Reachability
• Is	there	a	friendship	connection	between	
two	persons	identified	by	emails	
"$email1"	and	"$email2"	respectively?

• All	Path	Finding
• Get	the	friendship	paths	between	two	
persons	identified	by	emails	"$email1"	
and	"$email2"	respectively.

• Shortest	Path	Finding
• The	shortest	friendship	path	between	
two	persons	identified by	emails	
"$email1"	and	"$email2"	respectively".

• Regular	Path	Query
• Get	the	firstName of	friends	of	the	
friends	of	the	friends	of	a	person	
identified	by	email	"$email".

• Conjunctive	Regular	Path	Queries
• Given	a	target	message	created	on	
"$dateTime"	by	a	person	identified	by	
email	"$email",	for	each	comment	
replying	the	target	message,	get	the	
comment's	content	and	the	email	of	the	
comment´s	creator.

• Filtered	regular	path	query
• Given	a	person	identified	by	email	
"$email",	get	the	title	of	all	the	messages	
liked	by	such	person	between	
"$dateTime1"	and	"$dateTime2”.

Data	Model
• L is an	infinite	set of (node and edge)	labels;
• K is an infinite	set of property names
• V is an	infinite	set of literals (actual values);
• T is a	finite	set of value types (INT,	VARCHAR,	etc.)
• G is a	finite	set of graphs;
• N is a	finite	set of nodes;
• E is a	finite	set of edges such	that N and E have no
elements in	common;

• ρ : E→ (N × N)	is a	total	function;
• λ :	(N U E) →	SET(L) is a	total	function;
• σ :	(N U E) × K→ SET(V) is a	partial	function;
• θ :	V→	T is a	function;

Single	Graph	example
• L =	{Person,	knows}
• P =	{id,	name,	since}
• V =	{“123”,	“456”,	“Juan	Sequeda”,	“Marcelo	
Arenas”,	“2010”}

• N =	{n1,	n2}
• E =	{e1}
• ρ =	[ρ(e1) =	(n1,n2)]
• λ =	[λ(n1) =	“Person”,	λ(n2) =	“Person”,	λ(e1) =	
“knows”]

• σ =	[
σ(n1) =	{(“id”,	“123”),	(“name”,	“Juan	Sequeda”)},
σ(n2)	=	{(“id”,	“456”),	(“name”,	“Marcelo	
Arenas”)},
σ(e1) =	{(“since”,	“2010”)}
]

id:	123
name:	Juan	Sequeda

Person
id:	456
name:	Marcelo	Arenas

Person
knows

since:	2010

Graphs	as	Tables

• Complete	the	picture;	integrates	different	perspectives

• Allows	to	define	semantics	based	on	well-defined	relational	semantics

• Helps	to	better	see/understand	the	delta	to	SQL

• Helps	integration/adaption	of	QL	in	relational	systems

• Suggests	one	possible	implementation

Graphs	as	Tables

• built-in	properties	id$,	src$,	dest$,	graph$;
• id$: (G U	N U	E)	→	OID;
• OID(X)	=	{	x.id$ |	x∈ X }
• src$:	E→	OID(N);
• dest$:	E→	OID(N);
• graph$:	N→	OID(G).
• two	tables	Vertice and	Edges:
• the	schema	of	Vertice is	{id$,	graph$}	U	{k |	σ(n,k)	is	defined;	n	∈ N and	k	∈ K}
• the	schema	of	Edges is	{src$,	dest$}	U	{k |	σ(e,k)	is	defined;	e	∈ E and	k	∈ K}
• Vertice = Un	∈ N π​S(Vertice)﻿{n} Edge = Un∈ N πS(Edge){n}

Example

1 2 3 4

5 6 id label E.id E.dest

1 green 10 2

2 yellow 11 3

13 5

3 yellow 12 4

14 6

4 green no	out edges

5 yellow 15 6

6 green 16 4

10 11 12

13 14
15 16

Data	graph	G
SELECT x, y
FROM G (x:green)-[e:+]->(y:green)

id x y E.id E.dest

90 1 4 no	out edges

91 1 6 no	out edges

⋮

x=1
y=4

90
x=1
y=6

91

Query

Dealing	with	Objects

• Nodes	and	edges	are	object	with	a	system	managed	identity
• Object	Immutability
• For	queries,	objects	(nodes	and	edges)	are	immutable
• Query	can	create	new	(transient)	objects	out	of	queried	data
• Consequence:	Within	scope	of	a	query	the	object	identity	functionally	
determines	meta	type,	label,	and	property	values	of	an	object

• Identity	Generation
• Object	constructor	produces	new	object	identities	(OID	values)
• The	scope	of	ID	uniqueness	is	the	transaction	(query)
• Repeatability	of	ID	generation	is	not	guarantied

Current	Discussion	Points

How	to	represent	Paths

• How	to	represent	path	in	the	data	model?
• Just	use	existing	elements	of	the	data	model

• Keeps	data	model	simple,	but	complicate	interpretation	on	top
• As	a	data	type	for	properties

• Introduced	non-atomic	type	to	properties	à complicates	language
• By-elements	(actual	node	and	edges)	vs.	by-reference	(list	of	ids)

• Current	favorite:	Logical	paths	
• Another	top	level	set	in	the	data	model
• Does	not	contain	all	paths	but	just	marks	paths	of	users	interest

Example:	Logical	Paths

n1 n2 n4

n3

e1

e3 e2

e4

• G =	(N,	E,	P,	ρ,	λ,	δ,	σ)
• N =	{n1,n2,n3,n4,n5}	
• E =	{e1,e2,e3,e4,e5}	
• P =	∅
• ρ(e1)=(n1,n2),	ρ(e2)=(n2,n3),	

ρ(e3)=(n3,n2),	ρ(e4)=(n2,n4),	
ρ(e5)=(n3,n5)

SELECT p
FROM G p=((x:green)-[e:*]->(y:green))

Data	graph

• G’ =	(N’,	E’,	P’,	ρ’,	λ’,	δ’,	σ’)
• N’ =	{n1,n2,n3,n4}	
• E’ =	{e1,e2,e3,e4}	
• P’ =	{p1,p2,…}
• ρ’(e1)=(n1,n2),	ρ’(e2)=(n2,n3),	

ρ’(e3)=(n3,n2),	ρ’(e4)=(n2,n4)
• δ’(p1)	=	[e1,e4]

δ’(p2)	=	[e1,e2,e3,e4]

Result	graphn5
e5

n1 n2 n4

n3

e1

e3 e2

e4

Projection

• Relational-like	projection
• Limit	result	of	single	query	to	single	type	of	nodes	and	out	edge
• SELECT X.name, X.gender | length(p) AS sim
FROM G (X:Person)-[p:friend+]->(Y:Person)
GRAPH BY Y
• UNION	allows	to	assemble	more	complex	graphs
• Unclear	how	edge	targets	are	projected	if	of	another	node	type

• Graph	transformation-like	projection	(graph	projection	for	short)
• Allows	to	project	to	multiple	node	and	edge	types	in	one	go
• Result	specified	by	a	subgraph	pattern
• Intuitive,	very	graphy,	not	100%	orthogonal	to	UNION

Example:	Graph	Projection

21

23
l=3

l=4

SELECT (x)-[:{l=length(p)}]->(y)
FROM G (x:gree)-[CHEAPEST p:*]->(y:blue)

Query:

id label E.id E.dest E.l

1 green 21 4 4

23 6 3

6 blue no	out edges

4 blue no	out edges

1 4

6

1 2 3 4

5 6
id label E.id E.dest

1 green 10 2

2 yellow 11 3

13 5

3 yellow 12 4

14 6

4 blue no	out edges

5 yellow 15 6

6 blue 16 4

10 11 12

13 14
15 16

Data	graph	G

Creates	new	edge	in	
result	graph

Example:	Graph	Projection	w/	Aggregation

21 l=3,5

SELECT (x)-[:{l=AVG(length(p))}]->(z GROUP BY x:blue)
FROM G (x:green)-[CHEAPEST p:*]->(y:blue)

Query:

id label E.id E.dest E.l

1 green 21 7 3,5

7 blue no	out edges

1 7

1 2 3 4

5 6
id label E.id E.dest

1 green 10 2

2 yellow 11 3

13 5

3 yellow 12 4

14 6

4 blue no	out edges

5 yellow 15 6

6 blue 16 4

10 11 12

13 14
15 16

Data	graph	G

Creates	one	new	
node	per	x group

Creates	one	new	
edge	per	x group

Summary

• Accomplished
• Catalog	of	functionalities
• Core	data	model
• Principles	object	identities

• In	discussion
• Data	model	extension	for	path	representation
• Principles	of	graph	construction

• Ahead	of	us
• Putting	pieces	together	– define	semantics	of	language	core
• Define	a	syntax
• Extend	core	toward	advanced	concepts	(e.g.	path	with	data)

