LDBCS

LDBC Graph Query Language
Task Force

Status Report — 9% TUC Meeting

Speaker: Hannes Voigt, TU Dresden

Alm

e Study query languages for graph * Members
* Renzo Angles, Universidad de Talca
data .n:]anagement SYStE!’TlS, * Marcelo Arenas, PUC Chile - task force lead
specifically systems storing

“Property Graph” data

Pablo Barceld, Universidad de Chile
Peter Boncz, Vrije Universiteit Amsterdam

George Fletcher, Eindhoven University of
Technology

Claudio Gutierrez, Universidad de Chile
Tobias Lindaaker, Neo Technology
Marcus Paradies, SAP

Raquel Pau, UPC

Arnau Prat, UPC / Sparsity

Juan Sequeda, Capsenta

Oskar van Rest, Oracle Labs

Hannes Voigt, TU Dresden

Yinglong Xia, IBM

* Query language should cover the
needs of important use cases:
social network benchmark,
interactive and Bl workloads

Motivation

e Currently Babel of graph QLs with diversity in syntax and semantics
* PGQL: iso/homomorphism
* Cypher: “edge” isomorphism
* Gremlin: homomorphism
* SPARQL: homomorphism
* Reachability queries vs. path queries

* Practical consequences
* Applications are not portable
* Hard to define benchmarks
* Hard to compare Graph DBMS

e Standard

* Prevents vendor lock-in
* Fosters true performance competition = improvement of systems

Closed Query Languages

| —
=) SQL =» =) SQL =» = ...
e
however ...
o
Graph
'3?217 = Query = - ..?7?
Language™

L
i

NEXT

ToP

0002187

SCORE
0002186

LEVEL

<]

HEAVEN

B

VEL
W OI

NEXT

ToP
000000
SCORE
000000
Bl

HELL

Cross the Concept Chasm with Composability

e Users talk about...
* Application entities

* e.g. discussions, topics,
communities, etc.

 Likely multiple
abstraction levels

Query

£ e oo
=) R N S = ———— Main means
. e s ‘ e tO bridge
([J ey A i (1 %
Base data contains... = A B —

* Fine granular data T e W chos

* Low abstraction e — e
. . - e e D O e N e - - -
[=
Eg individual Users talk in high level concepts « Data captured in low level concepts
twitter MmesSsages, = = b Clofaaii F
. . s T s pt chasm
retweet relationships, - - - : -

- 5= - - . Sl 22 -

=
[http://nodexlgraphgallery.org/P.

ages/Graph.aspx?graphlD=70790]

-

zZE .
- -
etc . [Martin Grandjean, https://commons.wikimedia.org/wiki/File SocwaLNetwor<,/:ﬂd-@sws,\/\Suauzat\om.;mg, 2014]

=
-
—

High-level Design Goals

Person Person

id: 123
name: Juan Sequeda

* Query Language for Property Graph Model
* Power comparable to SQL 92

knows
since: 2010

id: 456
name: Marcelo Arenas

* Composability (language closed over data model)
* Orthogonal language concepts

e Paths as first class citizen —r——

Vol. 11(4:1)2015, pp. 1-39
www.Imcs-online.org

EXPRESSIVE PATH QUERIES ON GRAPHS WITH DATA*

PABLO BARCELO ¢, GAELLE FONTAINE”, AND ANTHONY WIDJAJA LIN ¢

@ Center for Semantic Web Research & Department of Computer Science, University of Chile
e-mail address: {pbarcelo, gaelle}@dcc.uchile.cl

“ Yale-NUS College, Singapore
e-mail address: anthony.w.to@gmail.com

Where are we now?

Catalog of Desired Query Functionalities

L) DateTi m:%

* Adjacency Queries o

Person

* Graph Pattern Matching T

4hasCreator

Message (Post)

+firstMName: St
+LlastMName: Str

* Navigational Queries rgender: Strin

+birthday: Dat

Likesw +title: String

* Aggregate Queries

ring +creationDate: DateTims
1ng D Duﬂimnﬁ +content: Text
g +length: Integer
e
1hasCreator replyofe
Likese Comment

i S U b q u e rl es creaticnDate: DuteT:imeH +creationDate: DateTims

+content: Text

replyOfm

Adjacency gueries

* Property access
* Get the firstName and lastName of a person having email "Semai

|II
* Neighborhood of a node
* Get the firstName and lastName of the friends of a person identified by email
"Semail".

* K-neighborhood of a node

e Get the email, firstName and lastName of friends of the friends of a person
having email "Semail" (excluding the start person) (i.e. get a list of
recommended friends) (directed 2-neighborhood)

Graph Pattern Matching

* Join
* Get the creationDate and content of the
messages created by a person identified by

email "Semaill" and commented by another
person identified by "Semail2".

e Union

* Get the creationDate and content of the
messages either created or liked by a person
identified by email "Semail".

* Intersection

* Get the email, firstName and lastName of the
common friends between two persons
identified by emails "Semaill" and "Semail2"
respectively.

e Difference

* Given two friends identified by emails
"Semaill" and "Semail2" respectively, get the
email, firstName and lastName of the friends
of the second person which are not friends of
the first person (this questions is relevant for
friendship recommendations).

e Optional
* Given a person identified by email "Semail",
get the title of all the messages created by

such person, and the content of the first
comment replying each message (if it exists).

e Filter

* Get the properties of the people whose
firstName includes the string "xxx" (it implies
use of wildcards).

Navigational queries

* Reachability

* Is there a friendship connection between
two persons identitied by emails
"Semaill" and "Semail2" respectively?

* All Path Finding

e Get the friendship Eaths between two
persons identified by emails "Semaill"
and "Semail2" respectively.

e Shortest Path Finding

* The shortest friendship path between
two persons identifie by emails
"Semaill" and "Semail2" respectively".

e Regular Path Query

* Get the firstName of friends of the
friends of the friends of a person
identified by email "Semail".

* Conjunctive Regular Path Queries

* Given a target message created on
"SdateTime" by a person identified by
email "Semail", for each comment
replying the target message, get the
comment's content and the email of the
comment’s creator.

* Filtered regular path query

* Gjven a person identified by email
"Semail", get the title of all the messages
liked by such person between
"SdateTimel" and "SdateTime2”.

Data Model

id: 123

L is an infinite set of (node and edge) labels;

K is an infinite set of property names

V is an infinite set of literals (actual values);

T is a finite set of value types (INT, VARCHAR, etc.)
G is a finite set of graphs;

N is a finite set of nodes;

E is a finite set of edges such that N and E have no
elements in common;

p:E—=> (N xN)is a total function;

A: (N UE) - SET(L) is a total function;
o:(NUE)xK - SET(V) is a partial function;
U:V = Tis a function;

Person

name: Juan Sequeda

Person

id: 456
name: Marcelo Arena

knows
since: 2010

Single Graph example
 L={Person, knows}
* P ={id, name, since}

e V={"123" “456”, “Juan Sequeda”, “Marcelo
Arenas”, “2010” }

* N={nl, n2}
e E={el}
* p =[ple1) =(n1,n2)]

e A= [A(nlf = “Person”, A(n2) = “Person”, A(el) =
“knows”

° o=
}nl) 2”id”, ”123”; § name” “Juan Sequeda”)},
n2) = {(“id”, “456”), (“name”, “Marcelo

Arenas”)

olel) = (‘since”, “20107)}

Graphs as Tables

* Complete the picture; integrates different perspectives

* Allows to define semantics based on well-defined relational semantics
* Helps to better see/understand the delta to SQL

* Helps integration/adaption of QL in relational systems

* Suggests one possible implementation

Graphs as Tables

built-in properties idS, srcS, destS, graphS;

id$: (GU N U E) > 0OID;

OID(X) ={x.idS | x € X}

srcS: E > OID(N);

destS: £ - OID(N);

graphS: N = OID(G).

two tables Vertice and Edges:

the schema of Vertice is {idS, graphS} U {k | o(n,k) is defined; n € N and k € K}
the schema of Edges is {srcS, destS} U {k | o(e k) is defined; e € E and k € K}

* Vertice = U, = y Ts(yertice)tN} Edge = U, = y Ms(eage)in}

Example

Data graph G

SELECT x, vy

11 12 FROM G (x:green)-[e:+]->(y:green)
"—»—»

13 16
< nmmm
green 2
2 yellow 11 3
— Tz mnlmm
4 no out edges
3 yellow 12 4
91 1 6 no out edges
14 6
4 green no out edges

5 vyellow 15 6
6 green 16 4

Dealing with Objects

* Nodes and edges are object with a system managed identity

* Object Immutability
* For queries, objects (nodes and edges) are immutable
* Query can create new (transient) objects out of queried data

* Consequence: Within scope of a query the object identity functionally
determines meta type, label, and property values of an object

* |dentity Generation
* Object constructor produces new object identities (OID values)
e The scope of ID unigueness is the transaction (query)
* Repeatability of ID generation is not guarantied

Current Discussion Points

How to represent Paths

* How to represent path in the data model?

* Just use existing elements of the data model
» Keeps data model simple, but complicate interpretation on top

* As a data type for properties
* Introduced non-atomic type to properties = complicates language

e By-elements (actual node and edges) vs. by-reference (list of ids)

e Current favorite: Logical paths
* Another top level set in the data model
* Does not contain all paths but just marks paths of users interest

Example: Logical Paths

e5
Data graph n3 ————> n5 Result graph n3

SELECT p
e3 e2 FROM G p=((x:green)-[e:*]->(y:green)) @3 e2

@—el>n2 nl el‘nz el = n4

* G=(N,E Pp A o) * G'=(NE,P,p, A% 6, 0)

e N={n1,n2,n3,n4,n5} * N’={nl1,n2,n3,n4}

e FE={el,e2,e3,e4,e5} * E’={el,e2,e3,e4}

e pPp=0 e P’'= {pllpzl}

« p(el)=(n1,n2), p(e2)=(n2,n3), * p’(el)=(n1,n2), p’(€2)=(n2,n3),
p(e3)=(n3,n2), p(e4)=(n2,n4), p’(e3)=(n3,n2), p’(e4)=(n2,n4)

p(e5)=(n3,n5) 6’(pl) =[el,ed]

Projection

* Relational-like projection

* Limit result of single query to single type of nodes and out edge

« SELECT X.name, X.gender | length(p) AS sim
FROM G (X:Person)-[p:friend+]->(Y:Person)
GRAPH BY Y

 UNION allows to assemble more complex graphs
* Unclear how edge targets are projected if of another node type

* Graph transformation-like projection (graph projection for short)
* Allows to project to multiple node and edge types in one go
* Result specified by a subgraph pattern
* Intuitive, very graphy, not 100% orthogonal to UNION

Example: Graph Projection

Data graph €

e 11 FROM G (x:gree)-[CHEAPEST p:*]->(y:blue)

2

green

yellow

yellow

blue

yellow

blue

11
13
12
14

no out edges

15
16

A 00w N

6

6
4

Creates new edge in

result graph
|

SELECT (x) [:{l=1length(p)}]- >(y)

green 21
23 6 3
6 blue no out edges
4 blue no out edges

Example: Graph Projection w/ Aggregation

Data graph €

G—' 11

2

green

yellow

yellow

blue

yellow

blue

13
12

A 00w N

14 6
no out edges
15 6
16 4

Creates one new Creates one new
edge per x group node per X group
Query A \

{ \ M \
SELECT (x)-[:{1l=AVG(length(p))}]1->(z GROUP BY x:blue)
FROM G (x:green)-[CHEAPEST p:*]->(y:blue)

o “o

green 21

7 blue no out edges

Summary

 Accomplished
* Catalog of functionalities
* Core data model
* Principles object identities

* In discussion
* Data model extension for path representation
* Principles of graph construction

 Ahead of us

e Putting pieces together — define semantics of language core
* Define a syntax
e Extend core toward advanced concepts (e.g. path with data)

