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Why a synthetic graph generator?

● Real graphs are sometimes difficult to obtain
● Not practical to distribute TeraBytes of data
● Privacy concerns

● Real data do not always have the desired characteristics
● Many dimensions to be tested (size, distributions, structural characteristics, etc.) as they can 

affect the performance of the tested systems
● Difficult to obtain real data for all the desired dimension combinations
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Wish list of a synthetic data generator

● Scalable 
● From GigaBytes to TeraBytes of data

● Realistic
● Distributions: attributes, degrees, etc. 
● Correlations: attributes, edges, etc.
● Structural characteristics: clustering coefficient, largest connected component, diameter, etc.

● Flexible
● Allow choosing the characteristics of the generated data
● Support different output formats
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LDBC SNB DATAGEN

● DATAGEN is a fork of S3G2[1]
● Started development during LDBC European Project as the data generator for the 

LDBC Social Network Benchmark Workload
● Available at: https://github.com/ldbc/ldbc_snb_datagen

[1] Pham, Minh-Duc, Peter Boncz, and Orri Erling. "S3g2: A scalable structure-correlated social graph generator." Selected Topics 
in Performance Evaluation and Benchmarking. Springer Berlin Heidelberg, 2013. 156-172.
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LDBC SNB DATAGEN

●  Generates a Social Network graph
● Uses dictionaries extracted from Dbpedia to populate the dataset with realistic attributes

● e.g. Person names, countries, companies, tags (interests)
● Correlated attributes

● e.g. Person names with countries, correlations between tags, etc. 
● Correlated Friendship subgraph

● i.e. Edges between persons sharing interests and universities are more likely
● Realistic distributions

● Facebook-like degree distribution, attribute distributions etc.
● Event-based user activity generation

● Mimick spikes of activity around specific events
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●  Built on top of Hadoop 
● Able to generate Terabytes of data with a small commodity cluster
● Billion edge graphs in few hours

●  Deterministic

LDBC SNB DATAGEN
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●  A 4-machine cluster
●  100,000 Person network
●  Block size m= 10,000 -> 10 blocks in total

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Node 0

Node 1

Node 2

Node 3
Block n

DBpedia 
dictionaries

Random number 
generatorsDegree sequence 

generator

P0 P1 P2 … Pm-1

Persons.file
Key = person id
Value = Person

Each block has its own 
independent state, which 
depends only on the block 
id. This guarantees 
determinism.

Person Generation
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Knows Graph Generation

One substep for each 
correlation dimension
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Parallel sort and 
rank

Persons.file
Key = person id
Value = Person Persons.file.sorted

Key = Rank
Value = Person

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Edge generation
Person.Edge.file.n
Key = person id
Value = Person
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Edge Generation Substep

●  Sort by correlation dimension:
● e.g. Main interest, University-age, random

●  Rank Person keys as their position in the 
sorted array (between 0 and N-1)
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Parallel sort and 
rank Block 0

Block 1

Block 2

Block 3

Block 4
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Block 6

Block 7
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Block 9

Edge generation
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Edge Generation Substep

Block 3

Block 7

Independent state

P0 P1 P2 Pm-1

Block n

o The probability of creating an edge decreases 
geometrically with the distance

o Persons with similar characteristics (close in the sorted 
array) are more likely to be connected, producing a 
correlated graph

o The amount of edge a person can create depends on its 
assigned target degree

o A weight is assigned to each edge, which can be 
overriden by the user

Persons.file
Key = person id
Value = Person Persons.file.sorted

Key = Rank
Value = Person

Person.Edge.file.n
Key = person id
Value = Person
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Merge edgesPerson.Edges.file.0

Person.Edges.file.1

Person.Edges.file.2
o To eliminate duplicate edges between 

the same pair of Persons

Persons.Edges.file.final

Edge Generation Substep
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Activity Generation 

Parallel sort and 
rank

Person.Edges.file.final Persons.Edges.file.
sorted

Block 0
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Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Activity generation

Using Random Correlation 
Dimension

serialized files
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Activity Generation 

● Split into two phases: Spiky vs uniform activity generation
● For each Person

Generate Wall
● Generate members (Person friends)
● Generate message cascade 

Generate Groups
● Generate members
● Generate message (Person friends and others in the 

block)
● Uniform: 

● Cascade initiator topic is correlated with author 
interests

● Creation Date is selected uniformly from max(author 
creation date, parent creation date) until end of 
simulation
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Spiky - Activity Generation 

TIMELINE
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Topic
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Spiky - Activity Generation 

Post/Comment 
creationDates are 
clustered around the 
flashmob tag following 
this shape.

Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Microscopic evolution of social
networks. In KDD, pages 462–470, 2008.
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Other features

● Control the size of the graph
● person based
● knows graph based

● Generate only the knows graph without all the activity
● Customize:

● the Knows graph degree distribution
● edge weights
● serializers
● the knows generation step
● message text generation
● data formatting
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Conclusions, known issues and next steps

● Datagen allows you to generate a realistic Social Network based on a Map/Reduce approach
● It scales to terabytes of data and billion edge graphs
● Monolithic execution model

● Things are generated even if they are not needed
● Why do we need to generate all Person attributes if we only need 20% of them when 

generating the graph for Graphalytics?
● Why do we need to populate “Knows” with person attributes if we are not going to 

generate activity?
● Leads to a bad use of resources and larger execution times
● LDBC Datagen 2: 

● New architecture/execution model, 
● In-Place data generation
● Language driven data/properties definition
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THANK YOU!
(and we are recruiting)
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