

LDBC SNB Datagen: Under the hood

Arnau Prat 9th LBDC TUC meeting 9/10 February Walldorf (Germany)

Why a synthetic graph generator?

- Real graphs are sometimes difficult to obtain
 - Not practical to distribute TeraBytes of data
 - Privacy concerns
- Real data do not always have the desired characteristics
 - Many dimensions to be tested (size, distributions, structural characteristics, etc.) as they can affect the performance of the tested systems
 - Difficult to obtain real data for all the desired dimension combinations

Wish list of a synthetic data generator

- Scalable
 - From GigaBytes to TeraBytes of data
- Realistic
 - Distributions: attributes, degrees, etc.
 - Correlations: attributes, edges, etc.
 - Structural characteristics: clustering coefficient, largest connected component, diameter, etc.
- Flexible
 - Allow choosing the characteristics of the generated data
 - Support different output formats

LDBC SNB DATAGEN

- DATAGEN is a fork of S3G2[1]
- Started development during LDBC European Project as the data generator for the LDBC Social Network Benchmark Workload
- Available at: https://github.com/ldbc/ldbc_snb_datagen

[1] Pham, Minh-Duc, Peter Boncz, and Orri Erling. "S3g2: A scalable structure-correlated social graph generator." Selected Topics in Performance Evaluation and Benchmarking. Springer Berlin Heidelberg, 2013. 156-172.

LDBC SNB DATAGEN

- Generates a Social Network graph
 - Uses dictionaries extracted from Dbpedia to populate the dataset with realistic attributes
 - e.g. Person names, countries, companies, tags (interests)
 - Correlated attributes
 - e.g. Person names with countries, correlations between tags, etc.
 - Correlated Friendship subgraph
 - i.e. Edges between persons sharing interests and universities are more likely
 - Realistic distributions
 - Facebook-like degree distribution, attribute distributions etc.
 - Event-based user activity generation
 - Mimick spikes of activity around specific events

LDBC SNB DATAGEN

- Built on top of Hadoop
 - Able to generate Terabytes of data with a small commodity cluster
 - Billion edge graphs in few hours

Deterministic

Data Generation Process

Person Generation Knows Graph Generation Knows graph serialization

Activity Generation

Activity serialization

Execution

Person Generation

LDBC

The graph & RDF benchmark reference

Each block has its own

id. This guarantees

independent state, which depends only on the block

- A 4-machine cluster
- 100,000 Person network
- Block size m= 10,000 -> 10 blocks in total

determinism. Block 8 Block 0 Node 0 Block 4 Random number generators Degree sequence Block 9 Block 1 Node 1 **DBpedia** generator Block 5 dictionaries Block 2 Node 2 Persons.file Block 6 Key = person id P1 P2 Pm-1 Block 3 Value = Person Node 3 Block 7 Block n

Data Generation Process

Person Generation Knows Graph Generation Knows graph serialization

Activity Generation

Activity serialization

Execution

Knows Graph Generation

Edge Generation Substep

Sort by correlation dimension:

sorted array (between 0 and N-1)

• e.g. Main interest, University-age, random

Rank Person keys as their position in the

Persons.file Person.Edge.file.n Edge generation Key = person id Key = person id Persons.file.sorted Parallel sort and Value = Person Value = Person Key = Rankrank Block 0 Block 8 Value = Person Block 4 Block 1 Block 9 Block 5 Block 2 Block 6 Block 3 Block 7

Edge Generation Substep

Person.Edge.file.n Key = person id Value = Person

- The amount of edge a person can create depends on its assigned target degree
- A weight is assigned to each edge, which can be overriden by the user

Edge Generation Substep

Merge edges

O To eliminate duplicate edges between the same pair of Persons

Data Generation Process

Person Generation Knows Graph Generation Knows graph serialization

Activity Generation

Activity serialization

Execution

Activity Generation

Activity Generation

LDBC

The graph & RDF
benchmark reference

- Split into two phases: Spiky vs uniform activity generation
- For each Person

Generate Wall

- Generate members (Person friends)
- Generate message cascade

Generate Groups

- Generate members
- Generate message (Person friends and others in the block)
- Uniform:
 - Cascade initiator topic is correlated with author interests
 - Creation Date is selected uniformly from max(author creation date, parent creation date) until end of simulation

Spiky - Activity Generation

Spiky - Activity Generation

Post/Comment creationDates are clustered around the flashmob tag following this shape.

Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Microscopic evolution of social networks. In KDD, pages 462–470, 2008.

Data Generation Process

Person Generation Knows Graph Generation Knows graph serialization

Activity Generation

Activity serialization

Execution

Other features

- Control the size of the graph
 - person based
 - knows graph based
- Generate only the knows graph without all the activity
- Customize:
 - the Knows graph degree distribution
 - edge weights
 - serializers
 - the knows generation step
 - message text generation
 - data formatting

Conclusions, known issues and next steps

- Datagen allows you to generate a realistic Social Network based on a Map/Reduce approach
- It scales to terabytes of data and billion edge graphs
- Monolithic execution model
 - Things are generated even if they are not needed
 - Why do we need to generate all Person attributes if we only need 20% of them when generating the graph for Graphalytics?
 - Why do we need to populate "Knows" with person attributes if we are not going to generate activity?
- Leads to a bad use of resources and larger execution times
- LDBC Datagen 2:
 - New architecture/execution model,
 - In-Place data generation
 - Language driven data/properties definition

THANK YOU!

(and we are recruiting)

