Shortest path extensions in
MonetDB

Dean De Leo, Peter Boncz
CWI, Amsterdam

9th TUC meeting in Walldorf, Germany
9th and 10t" of February 2017

Outline

* Introduction

* Description of the SQL extension
* Implementation details

e Conclusions

Introduction

e Part of the Dutch project COMMIT/ “Graphalyzing4Security”

e Objectives for CWI:

e Extend MonetDB to perform path traversals and compute weighted shortest
path expressions

e Evaluate the final product over the LDBC SNB IW benchmark

Graphs and reachability

* Assume the tables tbi(id, ...) and edges(e;, ., €,,, ---)
*Let G(N,E) = G(efrom Y eto»{< €from €to >})

 Are two entities connected?

SELECT v1.%*, v2.%
FROM tbl v1, tbl v2
WHERE v1.id REACHES v2.1d OVER edges EDGE (e, e)

Example — Reachability
I [

ID Name Surname ID1 ID2 CreationDate

933 Mahinda Perera 933 1063 2010-03-13T06:35:35.929+0000
1063 Gustavo Arbelaez 1063 933 2010-03-13T06:35:35.929+0000
1129 Carmen Lepland 1063 1129 2010-04-30T23:42:24.105+0000
1132 Wei Chen 1129 1063 2010-04-30T23:42:24.105+0000

>> |s Mahinda Perera connected to Carmen Lepland?

SELECT =*

FROM persons pl, persons p2

WHERE pl.name = ‘Mahinda’ and pl.surname = ‘Perera’
AND p2.name = ‘Carmen’ and p2.surname = ‘Lepland’

AND pl.id REACHES p2.id OVER friends EDGE (idl, id2)

Example — Reachability
I [

ID Name Surname ID1 ID2 CreationDate

933 Mahinda Perera 933 1063 2010-03-13T06:35:35.929+0000
1063 Gustavo Arbelaez 1063 933 2010-03-13T06:35:35.929+0000
1129 Carmen Lepland 1063 1129 2010-04-30T23:42:24.105+0000
1132 Wei Chen 1129 1063 2010-04-30T23:42:24.105+0000

>> \Was Mahinda Perera connected to Carmen Lepland before 01/04/20107?

WITH f AS (SELECT * FROM friends WHERE creationDate < 2010-04-01")

SELECT *

FROM persons pl, persons p2

WHERE pl.name = ‘Mahinda’ and pl.surname = ‘Perera’
AND p2.name = ‘Carmen’ and p2.surname = ‘Lepland’

AND pl.id REACHES p2.id OVER f EDGE (id1l, 1id2)

Shortest paths

e What is the minimum distance between two entities?

SELECT t1.%*, t2.%,
FROM tbl1l t1, tbl t2
WHERE t1.1d REACHES t2.1d OVER edges e EDGE (ef.ons ©€4o)

Shortest paths (Il)

 What is the shortest path between two entities?

SELECT t1.*, t2.*, CHEAPEST SUM (e: expr) AS (cost, path)
FROM tbl t1, tbl t2
WHERE t1.id REACHES t2.1d OVER edges e EDGE (ef.ons ©€to)

Shortest paths (Il)

 What is the shortest path between two entities?

SELECT tmp.*, path.=*

FROM (
SELECT t1.%*, t2.*, CHEAPEST SUM (e: expr) AS (cost, path)
FROM tbl1l t1, tbl t2

WHERE t1.id REACHES t2.id OVER edges e EDGE (e¢.ons ©€to)
) AS tmp FLATTEN path

Example — Shortest path

>> What is the fastest path from segment 1to 4 ?

Segmentl Segment2 Distance MaxSpeed
WITH q AS (
! 2 100 £ SELECT pl.id AS id1, p2.id AS id2,
2 4 200 80 CHEAPEST SUM (distance / (maxspeed / 3600))
AS (time, path)
1 3 220 130 FROM places p1, places p2
3 4 110 90 WHERE p1l.id = 1 AND p2.id =4

AND pl.id REACHES p2.id
OVER roads EDGE (segmentl, segment2)

1 3 220 130

3 4 110 90

0 1 9938

Example — Shortest path (2)

>> What is the fastest path from segment 1to 4 ?

Segmentl Segment2 Distance MaxSpeed
WITH gAS (...)
1 2 100 80 SELECT *
2 4 200 80 FROM g FLATTEN q.path
1 3 220 130
3 4 110 90
idt |id2 |tme | Segment1 |Segment2 | Distance | MaxSpeed |
0 1 9938 1 3 220 130

0 1 9938 3 4 110 90

Notes

e The graph is implicitly created
e All entities are table expressions or nested tables (path)
e Many to many weighted shortest paths

Some limitations:
* No possibility to specify path dependent conditions

* |n some cases the semantic is nontrivial:
SELECT CHEAPEST SUM(e: weight) AS cost
FROM v1, v2
WHERE v1.x REACHES v2.y OVER edges e EDGE (efroms ©€to)
OR vl.m = v2.n

Current state

* Working prototype based on MonetDB
e Reachability and minimum distance implemented
 While current work is to support paths (nested tables)

Implementation sketch

* Map the attributes to valuesin {0, ..., |[N| — 1}
* Build on-the-fly the graph G(N, E)
e Execute the shortest path operator(s)

Graph representation

1. Sort the edge table according to EO
2. Perform a prefix sum on EO

0 3 1000 0 3 1000
1 2 2000 <::::> 0 1 6000
0 1 6000 0 2 1000
0 2 1000 1 2 2000
1 0 1000 1 0 1000
1 0 2000 1 0 2000
1 3 4000 1 3 4000
2 1 6000 2 1 6000

O 00 N W

R W O O N N =P W

1000
6000
1000
2000
1000
2000
4000
6000

Shortest paths & join

e Use the BFS / Dijkstra algorithm to compute the shortest path(s)
while joining the connected tuples

* Project back the results

Future work

e Deterministic paths
e Graph indices
* Being resiliant to updates

Conclusions

e SQL extension to compute shortest paths over an (implicitly defined)
graph

* No evaluation results yet, sorry!
* Implementation to handle paths needs to be completed

e Future work

From attributes to vertices ID...

SELECT t1.%*, t2.*, CHEAPEST SUM (e:) AS cost
FROM tbl t1, tbl t2
WHERE t1.id REACHES t2.1id

10 20 1000

20 30 2000 edges
10 Tefrom ﬁv(edges) Teto _m(edges)
20
20
30 U
ALL
D Yo mapping
10 0
20 1

Ty, group_id - D
30 2

N =

N - - O

1000
2000

From attributes to vertices ID (2)

SELECT t1.%*, t2.*, CHEAPEST SUM (e: e..:) AS cost

FROM tbl t1, tbl
WHERE REACHES OVER edges e EDGE (€frons €to)
i D t2 D

10
30

10
20
tl ™;4-,D t2 M;q-y,D 30

	Shortest path extensions in MonetDB
	Outline
	Introduction
	Graphs and reachability
	Example – Reachability
	Example – Reachability
	Shortest paths
	Shortest paths (II)
	Shortest paths (II)
	Example – Shortest path
	Example – Shortest path (2)
	Notes
	Current state
	Implementation sketch
	Graph representation
	Shortest paths & join
	Future work
	Conclusions
	From attributes to vertices ID…
	From attributes to vertices ID (2)

