
Usable and efficient sparse matrix–vector multiplication

Efficient sparse matrix computations and their
generalization to graph computing applications

Albert-Jan Yzelman
Parallel Computing and Big Data

Paris Research Centre

10th of February, 2017

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Introduction

Given a sparse m × n matrix A, and corresponding vectors x , y .

How to calculate y = Ax as fast as possible?

How to make the code usable?

Figure: Wikipedia link matrix (’07) with on average ≈ 12.6 nonzeroes per row.

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Central obstacles for SpMV multiplication

Shared-memory:

inefficient cache use,

limited memory bandwidth, and

non-uniform memory access (NUMA).

Distributed-memory:

inefficient network use.

Shared-memory and distributed-memory share their objectives:

minimisation of data movement.
Cache-oblivious sparse matrix-vector multiplication by using sparse matrix partitioning methods by A. N. Yzelman & Rob
H. Bisseling in SIAM Journal of Scientific Computation 31(4), pp. 3128-3154 (2009).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Central obstacles for SpMV multiplication

Shared-memory:

inefficient cache use,

limited memory bandwidth, and

non-uniform memory access (NUMA).

Distributed-memory:

inefficient network use.

Shared-memory and distributed-memory share their objectives:

minimisation of data movement.
Cache-oblivious sparse matrix-vector multiplication by using sparse matrix partitioning methods by A. N. Yzelman & Rob
H. Bisseling in SIAM Journal of Scientific Computation 31(4), pp. 3128-3154 (2009).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Inefficient cache use

Visualisation of the SpMV multiplication Ax = y with nonzeroes
processed in row-major order:

Accesses on the input vector are completely unpredictable.

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Enhanced cache use: nonzero reorderings

Blocking to cache subvectors, and cache-oblivious traversals.

Other approaches: no blocking (Haase et al.), Morton Z-curves and bisection (Martone et al.), Z-curve within blocks
(Buluç et al.), composition of low-level blocking (Vuduc et al.), ...

Ref.: Yzelman and Roose, “High-Level Strategies for Parallel Shared-Memory Sparse Matrix–Vector Multiplication”,
IEEE Transactions on Parallel and Distributed Systems, doi: 10.1109/TPDS.2013.31 (2014).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Enhanced cache use: nonzero reorderings

Blocking to cache subvectors, and cache-oblivious traversals.

Sequential SpMV multiplication on the Wikipedia ’07 link matrix:
345 (CRS), 203 (Hilbert), 245 (blocked Hilbert) ms/mul.

Ref.: Yzelman and Roose, “High-Level Strategies for Parallel Shared-Memory Sparse Matrix–Vector Multiplication”,
IEEE Transactions on Parallel and Distributed Systems, doi: 10.1109/TPDS.2013.31 (2014).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Enhanced cache use: matrix permutations

1 2 3 4

1 2

43

Cache-oblivious sparse matrix-vector multiplication by using sparse matrix partitioning methods by A. N. Yzelman & Rob
H. Bisseling in SIAM Journal of Scientific Computation 31(4), pp. 3128-3154 (2009).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Enhanced cache use: matrix permutations

Practical gains:

Figure: the Stanford link matrix (left) and its 20-part reordering (right).

Sequential execution using CRS on Stanford:

18.99 (original), 9.92 (1D), 9.35 (2D) ms/mul.

Ref.: Two-dimensional cache-oblivious sparse matrix-vector multiplication by A. N. Yzelman & Rob H. Bisseling in
Parallel Computing 37(12), pp. 806-819 (2011).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Bandwidth

Theoretical turnover points: Intel Xeon E3-1225

64 operations per word (with vectorisation)

16 operations per word (without vectorisation)

(Image taken from da Silva et al., DOI 10.1155/2013/428078, Creative Commons Attribution License)

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Bandwidth

Consequence: compression leads to better performance.

Coordinate format storage: Θ(3nz)

Compressed Row Storage (CRS): Θ(2nz + m + 1)

Bi-directional Incremental CRS: Θ(2nz + row jumps + 1)

A =


4 1 3 0
0 0 2 3
1 0 0 2
7 0 1 1


Need to consider the whole picture; good cache efficiency but no
compression or compression but no cache optimisation? No gain!
Ref.: Yzelman and Bisseling, “A cache-oblivious sparse matrix–vector multiplication scheme based on the Hilbert curve”,
Progress in Industrial Mathematics at ECMI 2010, pp. 627-634 (2012).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Efficient bandwidth use

With BICRS you can

vectorise,

compress,

do blocking,

have arbitrary nonzero or block orders.

Optimised BICRS takes less than or equal to 2nz + m of memory.

Ref.: Buluç, Fineman, Frigo, Gilbert, Leiserson (2009). Parallel sparse matrix-vector and matrix-transpose-vector
multiplication using compressed sparse blocks. In Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures (pp. 233-244). ACM.

Ref.: Yzelman and Bisseling (2009). Cache-oblivious sparse matrix-vector multiplication by using sparse matrix
partitioning methods. In SIAM Journal of Scientific Computation 31(4), pp. 3128-3154.

Ref.: Yzelman and Bisseling (2012). A cache-oblivious sparse matrix–vector multiplication scheme
based on the Hilbert curve”. In Progress in Industrial Mathematics at ECMI 2010, pp. 627-634.

Ref.: Yzelman and Roose (2014). High-Level Strategies for Parallel Shared-Memory Sparse Matrix–Vector Multiplication.
In IEEE Transactions on Parallel and Distributed Systems, doi: 10.1109/TPDS.2013.31.

Ref.: Yzelman, A. N. (2015). Generalised vectorisation for sparse matrix: vector multiplication. In Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algorithms. ACM.

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

NUMA

Each socket has local main memory where access is fast.

Memory

CPUs

Memory access between sockets is slower, leading to non-uniform
memory access (NUMA).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

One-dimensional data placement

Coarse-grain row-wise distribution, compressed, cache-optimised:

explicit allocation of separate matrix parts per core,

explicit allocation of the output vector on the various sockets,

interleaved allocation of the input vector,

Ref.: Yzelman and Roose, “High-Level Strategies for Parallel Shared-Memory Sparse Matrix–Vector Multiplication”, IEEE
Transactions on Parallel and Distributed Systems, doi: 10.1109/TPDS.2013.31 (2014).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Two-dimensional data placement

Distribute row- and column-wise (individual nonzeroes):

most work touches only local data,
inter-process communication minimised by partitioning;
incurs cost of partitioning.

Ref.: Yzelman and Roose, High-Level Strategies for Parallel Shared-Memory Sparse Matrix–Vector Multiplication, IEEE
Trans. Parallel and Distributed Systems, doi:10.1109/TPDS.2013.31 (2014).

Ref.: Yzelman, Bisseling, Roose, and Meerbergen, MulticoreBSP for C: a high-performance library for shared-memory
parallel programming, Intl. J. Parallel Programming, doi:10.1007/s10766-013-0262-9 (2014).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Results

Sequential CRS on Wikipedia ’07: 472 ms/mul. 40 threads BICRS:

21.3 (1D), 20.7 (2D) ms/mul. Speedup: ≈ 22x.

Average speedup on six large matrices:
2 x 6 4 x 10 8 x 8

–, 1D fine-grained, CRS∗ 4.6 6.8 6.2
Hilbert, Blocking, 1D, BICRS∗ 5.4 19.2 24.6
Hilbert, Blocking, 2D, BICRS† − 21.3 30.8

†: uses an updated test set. (Added for reference versus a good 2D algorithm.)

As NUMA scales up, 1D algorithms lose efficiency.

∗: Yzelman and Roose, High-Level Strategies for Parallel Shared-Memory Sparse Matrix–Vector Multiplication, IEEE
Trans. Parallel and Distributed Systems, doi:10.1109/TPDS.2013.31 (2014).

†: Yzelman, Bisseling, Roose, and Meerbergen, MulticoreBSP for C: a high-performance library for shared-memory
parallel programming, Intl. J. Parallel Programming, doi:10.1007/s10766-013-0262-9 (2014).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Results

Sequential CRS on Wikipedia ’07: 472 ms/mul. 40 threads BICRS:

21.3 (1D), 20.7 (2D) ms/mul. Speedup: ≈ 22x.

Average speedup on six large matrices:
2 x 6 4 x 10 8 x 8

–, 1D fine-grained, CRS∗ 4.6 6.8 6.2
Hilbert, Blocking, 1D, BICRS∗ 5.4 19.2 24.6
Hilbert, Blocking, 2D, BICRS† − 21.3 30.8

†: uses an updated test set. (Added for reference versus a good 2D algorithm.)

As NUMA scales up, 1D algorithms lose efficiency.

∗: Yzelman and Roose, High-Level Strategies for Parallel Shared-Memory Sparse Matrix–Vector Multiplication, IEEE
Trans. Parallel and Distributed Systems, doi:10.1109/TPDS.2013.31 (2014).

†: Yzelman, Bisseling, Roose, and Meerbergen, MulticoreBSP for C: a high-performance library for shared-memory
parallel programming, Intl. J. Parallel Programming, doi:10.1007/s10766-013-0262-9 (2014).

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Usability

Wish list:
Performance and scalability.

Better usability. Standardised API? Generalised Sparse BLAS:

GraphBLAS.org

Interoperability with Big Data:

EYWA, Spark, Hadoop, DSLs, ...

Interoperability with classic HPC:

MPI + { PThreads, Cilk, OpenMP, . . .}
Ref.: Kepner & Gilbert, Linear Algebra in the Language of Linear Algebra, ISBN 978-0-898719-90-1, 2011

Ref.: Stepanov & McJones, The Elements of Programming, ISBN 978-0-321-63537-2, 2009

Ref.: Buluç & Gilbert, The Combinatorial BLAS, ICHPCA, 2011

Ref.: Zhang, Zalewski, Lumsdaine, Misurda, & McMillan, GBTL-CUDA, IPDPS, 2016

Ref.: Ekanadham, Horn, Kumar, Jann, Moreira, Pattnaik, Serrano, Tanase, & Yu, Graph programming interface (GPI),
ACM ICCF, 2016

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

GraphBLAS

A ‘generalised’ semiring is given by

< D1,D2,D3,D4,⊕,⊗, 0, 1 >,

with

⊕ : D3 × D4 → D4

⊗ : D1 × D2 → D3

These operators have to follow some basic rules, such as:
⊕(a, b) = ⊕(b, a), ⊕(⊕(a, b), c) = ⊕(a,⊕(b, c)), ⊗(⊗(a, b), c) =
⊗(a,⊗(b, c)), ⊗(a,⊕(b, c)) = ⊕(⊗(a, b),⊗(b, c)), ⊕(a, 0) =
⊕(0, a) = a, ⊗(a, 1) = ⊗(1, a) = a, ⊗(a, 0) = ⊗(0, a) = 0.

If these are true, (sparse) linear algebra ‘works’; we can apply all of our
performance optimisations regardless of the operators selected!

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Bridging HPC and Big Data

Platforms like Spark allow programmers to ignore data placement
issues, thus negatively impacting performance. It’s a classic tradeoff:

automatic mode vs. direct mode
ease-of-use vs. performance

Ref.: Valiant, L. G. (1990). A bridging model for parallel computation. Communications of the ACM, 33(8).

A bridge between Big Data and HPC:

Spark I/O via native RDDs and native Scala interfaces;

Rely on serialisation and the JNI to switch to C;

Intercept Spark’s execution model to switch to direct mode;

Set up and enable inter-process RDMA communications.

Both usable and performant!

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Bridging HPC and Big Data

Platforms like Spark allow programmers to ignore data placement
issues, thus negatively impacting performance. It’s a classic tradeoff:

automatic mode vs. direct mode
ease-of-use vs. performance

Ref.: Valiant, L. G. (1990). A bridging model for parallel computation. Communications of the ACM, 33(8).

A bridge between Big Data and HPC:

Spark I/O via native RDDs and native Scala interfaces;

Rely on serialisation and the JNI to switch to C;

Intercept Spark’s execution model to switch to direct mode;

Set up and enable inter-process RDMA communications.

Both usable and performant!

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Bridging Big Data and HPC

We have a shared-memory prototype. Preliminary results:

SpMM multiply, SpMV multiply, and basic vector operations;

one machine learning application, plus one on graph analysis.

Cage15, n = 5 154 859, nz = 99 199 551. Using the 1D method:

This is ongoing work. Performance will be improved,
functionality extended.

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Conclusions and future work

We know how to do fast sparse computations

use same techniques for graph computing.

Future work:

faster partitioning to enable scalable 2D sparse computations,

sparse power kernels,

symmetric matrix support,

hypergraph and sparse tensor computations,

support various hardware and execution platforms (Hadoop?).

The high performance (non-generalised) SpMV multiplication codes are free:
http://albert-jan.yzelman.net/software#SL

Thank you!
A. N. Yzelman

http://albert-jan.yzelman.net/software#SL

Usable and efficient sparse matrix–vector multiplication

Backup slides

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

GraphBLAS

A working example:

#include <graphblas.hpp>

int main() {

const size_t num_cities = ... //some input matrix size

grb::init();

grb::Matrix< double > distances(num_cities, num_cities);

grb::build(distances, ...); //input data from file

//or memory

grb::Vector< double > x(num_cities), y(num_cities);

grb::set(x, 0.0, 4); //set city number 4 to

//have distance 0.0

...

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

GraphBLAS

A working example (continued):

...

//declare an alternative semiring on doubles:

grb::Semiring< double, double, double, double,

grb::operators::min, //‘plus’

grb::operators::add, //‘multiply’

grb::identities::infinity //‘0’

grb::identitites::zero //‘1’

> ring;

//calculate the shortest distances from all cities to

//city #4, allowing only a single path

grb::mxv(y, distances, x, ring);

...

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

GraphBLAS

A working example (continued):

...

//calculate the shortest distances from all cities to

//city #4, allowing only a single path

grb::mxv(y, distances, x, ring);

//calculate the shortest distances from all cities to

//city #4, allowing two ‘hops’

grb::mxv(x, distances, y, ring);

//example output via iterators and exit:

writeResult(x.cbegin(), x.cend(), ...);

grb::finalize();

return 0;

}

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Results: cross platform

Cross platform results over 24 matrices:

Structured Unstructured Average

Intel Xeon Phi 21.6 8.7 15.2
2x Ivy Bridge CPU 23.5 14.6 19.0

NVIDIA K20X GPU 16.7 13.3 15.0

no one solution fits all.

If we must, some generalising statements:

Large structured matrices: GPUs.

Large unstructured matrices: CPUs or GPUs.

Smaller matrices: Xeon Phi or CPUs.

Ref.: Yzelman, A. N. (2015). Generalised vectorisation for sparse matrix: vector multiplication. In Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algorithms. ACM.

A. N. Yzelman

Usable and efficient sparse matrix–vector multiplication

Vectorised BICRS

A. N. Yzelman

	Appendix

