
Budapest University of Technology and Economics
Department of Measurement and Information Systems

MTA-BME Lendület Research Group on Cyber-Physical Systems
Fault Tolerant Systems Research Group

McGill University, Department of Electrical and Computer Engineering

The Train Benchmark:
Cross-Technology Performance Evaluation

of Continuous Model Queries

Gábor Szárnyas

LDBC benchmarks

 Graphalytics

 Semantics Publishing Benchmark

 Social Network Benchmark

o Interactive

o Business Intelligence

LDBC benchmarks

 Graphalytics

 Semantics Publishing Benchmark

 Social Network Benchmark

o Interactive

o Business Intelligence

Small updates Local patterns

LDBC benchmarks

 Graphalytics

 Semantics Publishing Benchmark

 Social Network Benchmark

o Interactive

o Business Intelligence

Small updates Local patterns

Large updates Global patterns

LDBC benchmarks

 Graphalytics

 Semantics Publishing Benchmark

 Social Network Benchmark

o Interactive

o Business Intelligence

Small updates

Global patterns

Model-Driven Engineering

Modeling

Model-Driven Engineering

Modeling

Early validations
Transformations

Model-Driven Engineering

Modeling

Code
generation

Early validations
Transformations

Model-Driven Engineering

Modeling

Code
generation

Testing

Early validations
Transformations

Model-Driven Engineering

Modeling

Code
generation

Testing

Early validations
Transformations

Model-Driven Engineering

Modeling

Code
generation

Testing

Early validations
Transformations

Scalability
challenges

Performance
issues

Model-Driven Engineering

Modeling

Code
generation

Testing

Early validations
Transformations

Scalability
challenges

Performance
issues

Model-Driven Engineering

Modeling

Code
generation

Testing

Early validations
Transformations

Scalability
challenges

Model Sizes

 Models = graphs with 100M–1B elements

o Car industry

o Avionics

o Software analysis

o Cyber-physical systems

Source: Markus Scheidgen, Automated and Transparent
Model Fragmentation for Persisting Large Models, 2012

application model size

software models 108

sensor data 109

geo-spatial models 1012

Model Sizes

 Models = graphs with 100M–1B elements

o Car industry

o Avionics

o Software analysis

o Cyber-physical systems

Source: Markus Scheidgen, Automated and Transparent
Model Fragmentation for Persisting Large Models, 2012

application model size

software models 108

sensor data 109

geo-spatial models 1012

Validation may take hours

Railway example

1

Switch

Sensor C

Sensor B

2

Sensor A

Segment

Route

Railway example

1

2

Railway example

1

2

Railway example

1

2

Railway example

1

2

Railway example

1

2

Railway example

1

2

Railway example

1

2

Railway example

1

2

Railway example

1

2Route 2

Route 1

Railway example

1

2Route 2

Route 1

Sensor C

Sensor B

Sensor A

Railway example

1

2Route 2

Route 1

Switch

Sensor C

Sensor B

Sensor A

Railway example

1

2Route 2

Route 1

Switch

Sensor C

Sensor B

Sensor A

Segment

Segment

Segment

Railway instance model

Segment

Segment

SegmentSwitch

Sensor C

Sensor B

Sensor A

Route 2

Route 1

Railway instance model

Segment

Segment

SegmentSwitch

Sensor C

Sensor B

Sensor A

Route 2Route 1

Railway instance model

Segment

Segment

SegmentSwitch

Sensor CSensor BSensor A

Route 2Route 1

Railway instance model

Segment

Segment

SegmentSwitch

Sensor CSensor BSensor A

Route 2Route 1

Railway instance model

Segment Segment

Sensor CSensor BSensor A

Route 2Route 1

Switch

Segment

Railway instance model

Segment Segment

Sensor CSensor BSensor A

Route 2Route 1

Switch

Segment

Railway instance model

Segment Segment

Sensor CSensor BSensor A

Route 2Route 1

Switch

Segment

SwitchPosition:
DIVERGING

SwitchPosition:
STRAIGHT

Railway instance model

Segment Segment

Sensor CSensor BSensor A

Route 2Route 1

Switch

Segment

SwitchPosition:
DIVERGING

SwitchPosition:
STRAIGHT

Railway instance model

Segment Segment

Sensor CSensor BSensor A

Route 2Route 1

Switch

Segment

SwitchPosition:
DIVERGING

SwitchPosition:
STRAIGHTIs this model valid?

Railway instance model

Segment Segment

Sensor CSensor BSensor A

Route 2Route 1

Switch

Segment

SwitchPosition:
DIVERGING

SwitchPosition:
STRAIGHT

Railway instance model

Segment Segment

Sensor CSensor BSensor A

Route 2Route 1

Switch

Segment

SwitchPosition:
DIVERGING

SwitchPosition:
STRAIGHT

Valid route

Railway instance model

Segment Segment

Sensor CSensor BSensor A

Route 2Route 1

Switch

Segment

SwitchPosition:
DIVERGING

SwitchPosition:
STRAIGHT

Railway instance model

Segment Segment

Sensor CSensor BSensor A

Route 2Route 1

Switch

Segment

SwitchPosition:
DIVERGING

SwitchPosition:
STRAIGHT

Missing connection
to the sensor

Benchmark criteria

Benchmark criteria

Early 1990s:

Benchmark criteria

Early 1990s: before the „browser wars”

Benchmark criteria

Early 1990s:

Benchmark criteria

Early 1990s:

„benchmark wars”

Benchmark criteria

Early 1990s:

„benchmark wars”

Jim Gray, Benchmark Handbook, 1993

Criteria for domain-specific benchmarks:

Benchmark criteria

Early 1990s:

„benchmark wars”

Jim Gray, Benchmark Handbook, 1993

Criteria for domain-specific benchmarks:

 Relevant

 Scalable

 Portable

 Simple

Benchmark phases

Change set size

{fixed, proportional}

Model
increasing

size

Query

Benchmark phases

1. Load
Change set size

{fixed, proportional}

Model
increasing

size

Query

Benchmark phases

1. Load 2. Validate
Change set size

{fixed, proportional}

Model
increasing

size

Query

Benchmark phases

1. Load 2. Validate
Change set size

{fixed, proportional}

Model
increasing

size

Query

Benchmark phases

1. Load 3. Transform2. Validate
Change set size

{fixed, proportional}

Model
increasing

size

Query

Benchmark phases

1. Load 3. Transform 4. Revalidate2. Validate
Change set size

{fixed, proportional}

Model
increasing

size

Query

Benchmark phases

1. Load 3. Transform 4. Revalidate2. Validate
Change set size

{fixed, proportional}

Model
increasing

size

Query

Benchmark phases

1. Load 3. Transform 4. Revalidate2. Validate

Iteration: × 10

Change set size

{fixed, proportional}

Model
increasing

size

Query

Benchmark phases

1. Load 3. Transform 4. Revalidate2. Validate

Iteration: × 10Run:× 5

Change set size

{fixed, proportional}

Model
increasing

size

Query

Benchmark phases

1. Load 3. Transform 4. Revalidate2. Validate

Iteration: × 10Run:× 5

Change set size

{fixed, proportional}

Model
increasing

size

Query Measure-

ments

Benchmark phases

1. Load 3. Transform 4. Revalidate2. Validate

Iteration: × 10Run:× 5

Change set size

{fixed, proportional}

Model
increasing

size

Query Measure-

ments

Warmup

Railway model

 Synthetic model

 Customizable model generator

Semaphore

Route

Segment
Switch

Entry

Exit
Switch position

of the Route

Current

position

of the Switch

EMF metamodel

EMF metamodel

Containment
hierarchy

EMF metamodel

No opposite
references

Containment
hierarchy

EMF metamodel

No opposite
references

Inheritance

Containment
hierarchy

EMF metamodel

No opposite
references

Inheritance

Containment
hierarchy

Enumerations

Instance model generation

 Randomly generated with increasing sizes

o 1, 2, 4, …

 Violations are inserted during generation

 Multiple formats:

o EMF

o property graph

o RDF

o SQL

EMF model

Property graph

RDF with metamodel

RDF with inferred tuples

Validation and transformation

 Well-formedness constraints

Validation and transformation

 Well-formedness constraints

 Queries are looking for error patterns

Validation and transformation

 Well-formedness constraints

 Queries are looking for error patterns

o Lots of filtering, joins, etc.

Validation and transformation

 Well-formedness constraints

 Queries are looking for error patterns

o Lots of filtering, joins, etc.

 Transformations

Validation and transformation

 Well-formedness constraints

 Queries are looking for error patterns

o Lots of filtering, joins, etc.

 Transformations

o Fault injections

o Quick fix-like repair operations

Queries

Queries

Queries

Transformation

Transformation

Threats to validity

Threats to validity

 Operating system: caching, scheduled jobs

Threats to validity

 Operating system: caching, scheduled jobs

 Cloud noise from the environment

Threats to validity

 Operating system: caching, scheduled jobs

 Cloud noise from the environment

 Parallel processes & multithreaded execution

Threats to validity

 Operating system: caching, scheduled jobs

 Cloud noise from the environment

 Parallel processes & multithreaded execution

 Managed runtime environments

o Java Virtual Machine

o .NET CLR

The effect of warmup

The effect of warmup

Two Java-based
query engines

The effect of warmup

The effect of warmup

First
execution time

The effect of warmup

First
execution time

The effect of warmup

First
execution time

Median
execution time
of 5 executions

The effect of warmup

First
execution time

Median
execution time
of 5 executions

Perform
multiple

executions

Benchmark environment

 Quad-core Xeon CPU

 SSD

 16 GB RAM

 Ubuntu 14.04 with Oracle Java 8

Benchmark environment

 Quad-core Xeon CPU

 SSD

 16 GB RAM

 Ubuntu 14.04 with Oracle Java 8
Support for

educational users

0.02 ms

0.02 ms

20 seconds

0.02 ms

20 seconds

6 OOM

Lessons learnt

Lessons learnt

 Contact tool authors for assistance

Lessons learnt

 Contact tool authors for assistance

 Very hard to tell the actual memory consumption

oManual calls to the garbage collector – not enough

o Profiler – still not enough

o Setting a hard limit is the best approach

Lessons learnt

 Contact tool authors for assistance

 Very hard to tell the actual memory consumption

oManual calls to the garbage collector – not enough

o Profiler – still not enough

o Setting a hard limit is the best approach

 Difficult to get relevant results

Lessons learnt

 Contact tool authors for assistance

 Very hard to tell the actual memory consumption

oManual calls to the garbage collector – not enough

o Profiler – still not enough

o Setting a hard limit is the best approach

 Difficult to get relevant results

o Lots of factors can add noise to the results

Lessons learnt

 Contact tool authors for assistance

 Very hard to tell the actual memory consumption

oManual calls to the garbage collector – not enough

o Profiler – still not enough

o Setting a hard limit is the best approach

 Difficult to get relevant results

o Lots of factors can add noise to the results

o Nothing works on the first try

Lessons learnt

 Contact tool authors for assistance

 Very hard to tell the actual memory consumption

oManual calls to the garbage collector – not enough

o Profiler – still not enough

o Setting a hard limit is the best approach

 Difficult to get relevant results

o Lots of factors can add noise to the results

o Nothing works on the first try

 Visualization helps a lot

o Automate with R/Python script

Train Benchmark summary

 Scalable model generator

 4 representation formats

 Realistic workload

 6 validation queries

 12 transformations

 Implemented for 12+ tools

 Visualization and reporting

Train Benchmark summary

 Scalable model generator

 4 representation formats

 Realistic workload

 6 validation queries

 12 transformations

 Implemented for 12+ tools

 Visualization and reporting

Gábor Szárnyas, Benedek Izsó, István Ráth, Dániel Varró:

The Train Benchmark: cross-technology performance
evaluation of continuous model queries, SOSYM 2017,

http://link.springer.com/article/10.1007/s10270-016-0571-8

http://link.springer.com/article/10.1007/s10270-016-0571-8

