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 Models = graphs with 100M–1B elements

o Car industry

o Avionics

o Software analysis

o Cyber-physical systems

Source: Markus Scheidgen, Automated and Transparent
Model Fragmentation for Persisting Large Models, 2012

application model size

software models 108

sensor data 109

geo-spatial models 1012

Validation may take hours
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Early 1990s:

„benchmark wars”

Jim Gray, Benchmark Handbook, 1993

Criteria for domain-specific benchmarks:

 Relevant

 Scalable

 Portable

 Simple
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Railway model

 Synthetic model

 Customizable model generator
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Instance model generation

 Randomly generated with increasing sizes

o 1, 2, 4, …

 Violations are inserted during generation

 Multiple formats:

o EMF

o property graph

o RDF

o SQL
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Validation and transformation

 Well-formedness constraints

 Queries are looking for error patterns

o Lots of filtering, joins, etc.

 Transformations

o Fault injections

o Quick fix-like repair operations
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Threats to validity

 Operating system: caching, scheduled jobs

 Cloud noise from the environment

 Parallel processes & multithreaded execution

 Managed runtime environments

o Java Virtual Machine

o .NET CLR
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educational users
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 Very hard to tell the actual memory consumption

oManual calls to the garbage collector – not enough

o Profiler – still not enough

o Setting a hard limit is the best approach

 Difficult to get relevant results

o Lots of factors can add noise to the results

o Nothing works on the first try

 Visualization helps a lot

o Automate with R/Python script
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