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SAP HANA Overview
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Offers advanced analytics features for graph, text, geospatial, and machine learning directly on business data
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Graph Querying Paradigms in SAP HANA
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Design Principles
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GraphScript Type System
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Graph Data Exposure in GraphScript

Vertex Table Edge Table
CREATE COLUMN TABLE MYSCHEMA.VERTICES ( CREATE COLUMN TABLE MYSCHEMA.EDGES (
ID VARCHAR(100) PRIMARY KEY, ID INTEGER PRIMARY KEY,
TYPE VARCHAR(100), SRC VARCHAR(100) NOT NULL
NAME VARCHAR(100), REFERENCES MYSCHEMA.VERTICES (ID)
TITLE VARCHAR(100) TRGT VARCHAR(100) NOT NULL
); REFERENCES MYSCHEMA.VERTICES (ID)

TYPE VARCHAR(50)

)s

CREATE GRAPH WORKSPACE MYSCHEMA.MY_GRAPH
EDGE TABLE MYSCHEMA.EDGES
SOURCE COLUMN SRC

TARGET COLUMN TRGT _
KEY COLUMN ID Metadata Object

VERTEX TABLE MYSCHEMA.VERTICES
KEY COLUMN ID;

Graph Workspace
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Graph Data Exposure in GraphScript /2

Vertex Table View Edge Table View
CREATE VIEW MYSCHEMA.VERTEX_ VIEW AS CREATE VIEW MYSCHEMA.EDGE VIEW AS
SELECT * FROM MYSCHEMA.VERTICES SELECT * FROM MYSCHEMA.EDGES
WHERE TYPE = K WHERE TYPE = K

CREATE GRAPH WORKSPACE MYSCHEMA.MY_SUBGRAPH
EDGE TABLE MYSCHEMA.EDGE_VIEW

SOURCE COLUMN SRC
TARGET COLUMN TRGT Graph Workspace

KEY COLUNN ID Metadata Object
VERTEX TABLE MYSCHEMA.VERTEX VIEW

KEY COLUMN ID;
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A Simple GraphScript Example

CREATE PROCEDURE "myGraphProc"(OUT numNeighbors BIGINT)
LANGUAGE GRAPH READS SQL DATA AS
BEGIN
Graph g = Graph("myGraph");
ALTER g ADD TEMPORARY VERTEX ATTRIBUTE(BIGINT cnt = 0);
FOREACH v IN Vertices(:g) {
v.cnt = Count(Neighbors(:g, :v, 1, 3));
}
FOREACH v IN Vertices(:g) {
numNeighbors += :v.cnt;

¥
END
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Adjacency List Construction
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Vertex Key

Adjacency List Dictionary

Key Color
C green
D green
E yellow
A green
B green
F yellow
G green
Vertex Attributes

Variants:

Omit dictionary encoding for dense
key domains

Static/Dynamic/Compressed
adjacency list

Vertex/edge adjacency

Parallel Index Construction with up to 65 Mio. edge insertions/sec
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Inducing Subgraphs Data graph: §57\

—
"Induce a graph over all Graph g = Subgraph(:g, e IN Edges(:g)
blue edges" c WHERE :e.color == 'blue');
"Induce a graph over all .\ Graph g = Subgraph(:g, e IN Edges(:g) WHERE
red edges that connect a Source(:e).color == 'green' AND
green and a yellow 5 6 | Target(:e).color == 'yellow' AND :e.color ==
vertex" 1 ‘\' 'red');
"Induce a graph overall all ;\ Vertex vl = Vertex(:g, 4);
vertices that are 6 Graph g = Subgraph(:g, v IN Vertices(:g)
reachable from vertex 4 5\'/ WHERE IS_REACHABLE(:g, :v1, :v);
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Integration with other Data Models/Scalar Types

Creation of Relational Output from GraphScript

Graph g = Graph("myWorkspace");
ALTER g ADD TEMPORARY VERTEX ATTRIBUTE(DOUBLE length = 0);
FOREACH v IN Vertices(:g) {
Path p = Shortest Path(:g, :v, Vertex(:g, 1));
v.length = Length(:p);
}
outTab = SELECT :v.id, :v.length FOREACH v IN Vertices(:g);

Integration with Geospatial Processing

Graph g = Graph("myWorkspace");
ST_Geometry area = Vertex(:g, ) .area;
Graph gl = Subgraph(:g, v IN Vertices(:g) WHERE :v.type ==
AND ST _Within(:v.location , :area));
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Conclusion

Rich type system with native graph types

Powerful imperative constructs

Generation of low-level code against internal Graph Storage interface
Elimination of query processing on external keys

Pushdown of filter conditions to relational engine

More language extensions towards fast traversals and user-defined function invocations

More advanced GraphScript program rewritings and optimizations
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