GraphScript: Implementing Complex

Marcus Paradies, SAP SE
September 1, 2017

PUBLIC

WRun Simple

|
SAP HANA Overview

SAP HANA PLATFORM

APPLICATION SERVICES PROCESSING SERVICES INTEGRATION & QUALITY SERVICES
</> 283 % % Q & Tt
Web Server JavaScript Spatial Graph Predictive Search Data Virtualization ELT & Replication
S TH O # = I o ®
Fiori UX Graphic Application Lifecycle Text Streaming Series Business Data Hadoop & Remote
Modeler Management Analytics Analytics Data Functions Quality Spark Integration Data Sync

DATABASE SERVICES

Columnar Multi-Core & Advanced Multi-tenancy Multi-Tier Data Openness Admin & High Availability &
OLTP+OLAP Parallelization Compression Storage Modeling Security Disaster Recovery

Offers advanced analytics features for graph, text, geospatial, and machine learning directly on business data

© 2017 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC 2

.
Graph Querying Paradigms in SAP HANA

Graph Pattern Matching Graph Analysis

COMPANY B
L & & & Fais
®

‘; COMPANY C
| ok Ay
|]
COMPANY A |
* ok kT Ts COMPANY G
° Yok k7T
|
<)
b
OMPA
Al \\.

COMPANY F
L3 8 § \Sks

gﬁaerrr;ple "Retrieve all suppliers of Company D" "Compute all communities in the graph”
Language . :
Interface openCypher GraphScript

© 2017 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC * L| mlted sSu bset Of |anguage SpEC 3

N
Design Principles

Expressiveness

& Simplicity

Easy-to-use for
graph algorithm
Implementers

Support for a
large variety of
graph algorithm
classes and
workflows

© 2017 SAP SE or an SAP affiliate company. All rights rese

Orthogonality

rved. | PUBLIC

Minimality &

Limited but
effective set of
types and
operations
thereon

Extensibility of
built-in graph
operators

Native Graph
Abstraction

Native exposure
of graph-
specific types

Full exposure of
graph data
model

Relational only
for returning
complex results

Tight
Integration

Pushdown of
operations to
relational store

Reuse of
dependency
management

Reuse of
resource
management

High
Performance

Desired
performance
close to hand-
written code

Explicit
parallelization
Effective

Program
Rewritings

.
GraphScript Type System

Path

Graph Graph

Edge Types
Vertex
Bag<T> Decimal
Container Sequence<T> - Int SQL Scalar
Types gL Types
Table<T...> Timestamp

ST Point

© 2017 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC 5

.
Graph Data Exposure in GraphScript

Vertex Table Edge Table
CREATE COLUMN TABLE MYSCHEMA.VERTICES (CREATE COLUMN TABLE MYSCHEMA.EDGES (
ID VARCHAR(100) PRIMARY KEY, ID INTEGER PRIMARY KEY,
TYPE VARCHAR(100), SRC VARCHAR(100) NOT NULL
NAME VARCHAR(100), REFERENCES MYSCHEMA.VERTICES (ID)
TITLE VARCHAR(100) TRGT VARCHAR(100) NOT NULL
); REFERENCES MYSCHEMA.VERTICES (ID)

TYPE VARCHAR(50)

)s

CREATE GRAPH WORKSPACE MYSCHEMA.MY_GRAPH
EDGE TABLE MYSCHEMA.EDGES
SOURCE COLUMN SRC

TARGET COLUMN TRGT _
KEY COLUMN ID Metadata Object

VERTEX TABLE MYSCHEMA.VERTICES
KEY COLUMN ID;

Graph Workspace

© 2017 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

.
Graph Data Exposure in GraphScript /2

Vertex Table View Edge Table View
CREATE VIEW MYSCHEMA.VERTEX_ VIEW AS CREATE VIEW MYSCHEMA.EDGE VIEW AS
SELECT * FROM MYSCHEMA.VERTICES SELECT * FROM MYSCHEMA.EDGES
WHERE TYPE = K WHERE TYPE = K

CREATE GRAPH WORKSPACE MYSCHEMA.MY_SUBGRAPH
EDGE TABLE MYSCHEMA.EDGE_VIEW

SOURCE COLUMN SRC
TARGET COLUMN TRGT Graph Workspace

KEY COLUNN ID Metadata Object
VERTEX TABLE MYSCHEMA.VERTEX VIEW

KEY COLUMN ID;

© 2017 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC 7

A Simple GraphScript Example

CREATE PROCEDURE "myGraphProc"(OUT numNeighbors BIGINT)
LANGUAGE GRAPH READS SQL DATA AS
BEGIN
Graph g = Graph("myGraph");
ALTER g ADD TEMPORARY VERTEX ATTRIBUTE(BIGINT cnt = 0);
FOREACH v IN Vertices(:g) {
v.cnt = Count(Neighbors(:g, :v, 1, 3));
}
FOREACH v IN Vertices(:g) {
numNeighbors += :v.cnt;

¥
END

SAP affiliate company. All rights reserved. | PUBLIC 8

Adjacency List Construction

O(|1]|2 °1C
11125 11D
2 2| E
34| 2 3 1A
4110 |2 41 B
S || 6 5 | F
6 || 2 6 | G
Vertex Key

Adjacency List Dictionary

Key Color
C green
D green
E yellow
A green
B green
F yellow
G green
Vertex Attributes

Variants:

Omit dictionary encoding for dense
key domains

Static/Dynamic/Compressed
adjacency list

Vertex/edge adjacency

Parallel Index Construction with up to 65 Mio. edge insertions/sec

SAP affiliate company. All rights reserved. | PUBLIC

Inducing Subgraphs Data graph: §57\

—
"Induce a graph over all Graph g = Subgraph(:g, e IN Edges(:g)
blue edges" c WHERE :e.color == 'blue');
"Induce a graph over all .\ Graph g = Subgraph(:g, e IN Edges(:g) WHERE
red edges that connect a Source(:e).color == 'green' AND
green and a yellow 5 6 | Target(:e).color == 'yellow' AND :e.color ==
vertex" 1 ‘\' 'red');
"Induce a graph overall all ;\ Vertex vl = Vertex(:g, 4);
vertices that are 6 Graph g = Subgraph(:g, v IN Vertices(:g)
reachable from vertex 4 5\'/ WHERE IS_REACHABLE(:g, :v1, :v);

© 2017 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

Integration with other Data Models/Scalar Types

Creation of Relational Output from GraphScript

Graph g = Graph("myWorkspace");
ALTER g ADD TEMPORARY VERTEX ATTRIBUTE(DOUBLE length = 0);
FOREACH v IN Vertices(:g) {
Path p = Shortest Path(:g, :v, Vertex(:g, 1));
v.length = Length(:p);
}
outTab = SELECT :v.id, :v.length FOREACH v IN Vertices(:g);

Integration with Geospatial Processing

Graph g = Graph("myWorkspace");
ST_Geometry area = Vertex(:g,) .area;
Graph gl = Subgraph(:g, v IN Vertices(:g) WHERE :v.type ==
AND ST _Within(:v.location , :area));

© 2017 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC

11

=
Conclusion

Rich type system with native graph types

Powerful imperative constructs

Generation of low-level code against internal Graph Storage interface
Elimination of query processing on external keys

Pushdown of filter conditions to relational engine

More language extensions towards fast traversals and user-defined function invocations

More advanced GraphScript program rewritings and optimizations

© 2017 SAP SE or an SAP affiliate company. All rights reserved. | PUBLIC 12

Contact information:

Marcus Paradies
marcus.paradies@sap.com

WRun Simple

	Foliennummer 1
	SAP HANA Overview
	Graph Querying Paradigms in SAP HANA
	Design Principles
	GraphScript Type System
	Graph Data Exposure in GraphScript
	Graph Data Exposure in GraphScript /2
	A Simple GraphScript Example
	Adjacency List Construction
	Inducing Subgraphs
	Integration with other Data Models/Scalar Types
	Conclusion
	Thank you.

