
PUBLIC

Marcus Paradies, SAP SE
September 1, 2017

GraphScript: Implementing Complex
Graph Algorithms in SAP HANA

2PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

SAP HANA Overview

DATABASE SERVICES

Web Server JavaScript

Graphic
Modeler

Data Virtualization ELT & Replication

Columnar
OLTP+OLAP

Multi-Core &
Parallelization

Advanced
Compression

Multi-tenancy Multi-Tier
Storage

Graph Predictive Search

Data
Quality

Series
Data

Business
Functions

Hadoop &
Spark Integration

Streaming
Analytics

Application Lifecycle
Management

High Availability &
Disaster Recovery

OpennessData
Modeling

Admin &
Security

Remote
Data Sync

Spatial

Text
Analytics

Fiori UX

ALM

</>

APPLICATION SERVICES INTEGRATION & QUALITY SERVICESPROCESSING SERVICES

S A P H A N A P L A T F O R M

o Offers advanced analytics features for graph, text, geospatial, and machine learning directly on business data

3PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Graph Querying Paradigms in SAP HANA
Graph AnalysisGraph Pattern Matching

"Retrieve all suppliers of Company D" "Compute all communities in the graph"

* Limited subset of language spec

Example
Query

openCypher* GraphScriptLanguage
Interface

4PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Design Principles

Minimality &
Orthogonality

Expressiveness
& Simplicity

• Easy-to-use for
graph algorithm
implementers

• Support for a
large variety of
graph algorithm
classes and
workflows

• Limited but
effective set of
types and
operations
thereon

• Extensibility of
built-in graph
operators

Native Graph
Abstraction

• Pushdown of
operations to
relational store

• Reuse of
dependency
management

• Reuse of
resource
management

Tight
Integration

• Native exposure
of graph-
specific types

• Full exposure of
graph data
model

• Relational only
for returning
complex results

High
Performance

• Desired
performance
close to hand-
written code

• Explicit
parallelization

• Effective
Program
Rewritings

5PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

GraphScript Type System

SQL Scalar
Types

Container
Types

Graph
Types

Vertex
Edge

Graph
Path

Bag<T>

Sequence<T>

Table<T…>

Int

Timestamp

Decimal

Text

ST_Point…

…

…

6PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

CREATE COLUMN TABLE MYSCHEMA.EDGES (
ID INTEGER PRIMARY KEY,
SRC VARCHAR(100) NOT NULL
REFERENCES MYSCHEMA.VERTICES (ID)

TRGT VARCHAR(100) NOT NULL
REFERENCES MYSCHEMA.VERTICES (ID)

TYPE VARCHAR(50)
);

Edge Table

Graph Data Exposure in GraphScript

CREATE GRAPH WORKSPACE MYSCHEMA.MY_GRAPH
EDGE TABLE MYSCHEMA.EDGES
SOURCE COLUMN SRC
TARGET COLUMN TRGT
KEY COLUMN ID

VERTEX TABLE MYSCHEMA.VERTICES
KEY COLUMN ID;

CREATE COLUMN TABLE MYSCHEMA.VERTICES (
ID VARCHAR(100) PRIMARY KEY,
TYPE VARCHAR(100),
NAME VARCHAR(100),
TITLE VARCHAR(100)

);

Vertex Table

Graph Workspace

Metadata Object

7PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Graph Data Exposure in GraphScript /2

CREATE GRAPH WORKSPACE MYSCHEMA.MY_SUBGRAPH
EDGE TABLE MYSCHEMA.EDGE_VIEW
SOURCE COLUMN SRC
TARGET COLUMN TRGT
KEY COLUMN ID

VERTEX TABLE MYSCHEMA.VERTEX_VIEW
KEY COLUMN ID;

CREATE VIEW MYSCHEMA.VERTEX_VIEW AS
SELECT * FROM MYSCHEMA.VERTICES
WHERE TYPE = 'Person';

CREATE VIEW MYSCHEMA.EDGE_VIEW AS
SELECT * FROM MYSCHEMA.EDGES
WHERE TYPE = 'knows';

Vertex Table View Edge Table View

Graph Workspace
Metadata Object

8PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

A Simple GraphScript Example

CREATE PROCEDURE "myGraphProc"(OUT numNeighbors BIGINT)
LANGUAGE GRAPH READS SQL DATA AS
BEGIN
Graph g = Graph("myGraph");
ALTER g ADD TEMPORARY VERTEX ATTRIBUTE(BIGINT cnt = 0);
FOREACH v IN Vertices(:g) {
v.cnt = Count(Neighbors(:g, :v, 1, 3));

}
FOREACH v IN Vertices(:g) {
numNeighbors += :v.cnt;

}
END

9PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Adjacency List Construction

0
1
2
3
4
5
6

1 2
2 5

4 2
0 2
6

B

C
D

E
A G

F

C
D
E
A
B
F
G

0

1

2

3

4

5

62
Vertex Key
DictionaryAdjacency List

C green
D green
E yellow
A green
B green
F yellow
G green

Vertex Attributes

Parallel Index Construction with up to 65 Mio. edge insertions/sec

Variants:

• Omit dictionary encoding for dense
key domains

• Static/Dynamic/Compressed
adjacency list

• Vertex/edge adjacency

Key Color

10PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Inducing Subgraphs

"Induce a graph over all
blue edges"

Graph g = Subgraph(:g, e IN Edges(:g)
WHERE :e.color == 'blue');

"Induce a graph over all
red edges that connect a

green and a yellow
vertex"

Graph g = Subgraph(:g, e IN Edges(:g) WHERE
Source(:e).color == 'green' AND
Target(:e).color == 'yellow' AND :e.color ==
'red');

"Induce a graph overall all
vertices that are

reachable from vertex 4"

Vertex v1 = Vertex(:g, 4);

Graph g = Subgraph(:g, v IN Vertices(:g)
WHERE IS_REACHABLE(:g, :v1, :v);

2
3

4

5
1

3
4

5
1 7

6

4

5
7

6

2
3 4

51 7
6Data graph:

11PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Integration with other Data Models/Scalar Types

Integration with Geospatial Processing

Graph g = Graph("myWorkspace");
ALTER g ADD TEMPORARY VERTEX ATTRIBUTE(DOUBLE length = 0);
FOREACH v IN Vertices(:g) {
Path p = Shortest_Path(:g, :v, Vertex(:g, 1));
v.length = Length(:p);

}
outTab = SELECT :v.id, :v.length FOREACH v IN Vertices(:g);

Creation of Relational Output from GraphScript

Graph g = Graph("myWorkspace");
ST_Geometry area = Vertex(:g, 'Munich').area;
Graph g1 = Subgraph(:g, v IN Vertices(:g) WHERE :v.type == 'Person'

AND ST_Within(:v.location , :area));

12PUBLIC© 2017 SAP SE or an SAP affiliate company. All rights reserved. ǀ

Language Constructs
• Rich type system with native graph types

• Powerful imperative constructs

Code Generation
• Generation of low-level code against internal Graph Storage interface

• Elimination of query processing on external keys

• Pushdown of filter conditions to relational engine

Future Work
• More language extensions towards fast traversals and user-defined function invocations

• More advanced GraphScript program rewritings and optimizations

Conclusion

Thank you.
Contact information:

Marcus Paradies
marcus.paradies@sap.com

	Foliennummer 1
	SAP HANA Overview
	Graph Querying Paradigms in SAP HANA
	Design Principles
	GraphScript Type System
	Graph Data Exposure in GraphScript
	Graph Data Exposure in GraphScript /2
	A Simple GraphScript Example
	Adjacency List Construction
	Inducing Subgraphs
	Integration with other Data Models/Scalar Types
	Conclusion
	Thank you.

