

ontology-driven applications in the context of the e-commerce vertical

LDBC, 3rd TUM

2013-11-19, London

Dr. Andreas Both

Head of Research and Development
Unister GmbH
Leipzig, Germany

Unister

- e-commerce service provider
- B2C context
- large scale web portals
- verticals: travel, comparison, ...

Why interested into Linked Data?

- major flaw: currently web portals mostly just provide product access
- users search for environment information

Challenges

- Data Integration
- 2. Semantic Search

Data Integration: Overview

Data Integration: Requirements

- private data: short interval update
- request for high quality data
- · co-evolution of data
- data validations (tests)
- deliver a sound set of relevant changes within the ontology to the QA
- statistics analyses (aggregation queries)

Example: Statistics Analyses

uncover integration problems

- distribution of hotel stars per region
- · clustering of hotel features
- discover outliers
- ٠ ..

Challenges

- 1. Data Integration
- 2. Semantic Search

Search-driven Web Applications

ontology-driven auto completion

- suggestions based on ontology
- SPARQL based implementation is slow
- functional lack: string evaluation (labels)

search suggestions

- compute similar resources based on attributes
- weighted evaluation (ranking)
- performance lack: on the fly computations

Search-driven Web Applications

common semantic search patterns

A: Concept1 Relation1 Instance1. Concept1 Relation2 Instance2.

- Hotel located_in "London". Hotel has_feature "WiFi".
- Hotel nearby "River Rhine". Hotel suiteable_for "Families".

B: Concept1 Relation1 Concept2. Concept1 Relation2 Instance.

• Hotel close_to Beach. Hotel in "Spain".

C: Concept1 Relation1 Instance1. Concept1 Relation2 Concept2. Concept2 Relation3 Instance3.

• Hotel located_in "Italy". Hotel close_to City. City has "Culture".

Search-driven Web Applications

search with social aspects

- fetch data of the user's social graph
- · integrate social graph into search query
- problem: on the fly integration and computation

Conclusion: Benchmark Requirements

- compute statistics insights
 - e.g., distributions of features depending on attributes
- · geospatial searches using polygons
 - e.g., rivers
- · appending and evaluating graph on the fly for querying
 - e.g., social aspects
- performance of set-oriented queries
 - ∘ e.g., Hotel located_in "London". Hotel has_feature "WiFi".
- traffic peaks on live web application
 - cache effect possible on application level (less important)

Dr. Andreas Both

Head of Research and Development Unister GmbH, Germany

andreas.both@unister.de +49-341-65050-24496

unister.de

geoknow.eu