
Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Evaluating a New Distributed Graph Query
Engine with LDBC:

Experiences and Limitations
Vasileios Trigonakis <vasileios.trigonakis@oracle.com>
Principal Researcher
Oracle Labs, PGX

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

2

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Why Using LDBC?

• Distributed

• In-memory

• Fast and scalable

New Graph
Querying Engine

• Correctness

• Performance

• Scalability

• Compare to others

Evaluate
• Understand

• Improve

• Publish the results

Goals

Use LDBC because it is standardized and queries/graphs available for many engines

3

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Using LDBC with PGX Distributed (PGX.D)

LDBC SNB Business
Intelligence Queries

PGQL for PGX.SM
Adapt queries for
PGX.D’s features

4

Who wants to use LDBC? Established engines, but also new engines under development

Other new-ish engines (e.g., Apache Spark GraphFrames) also need this last step

Focus on read-
only queries

e.g., removed HAVING
clause, subqueries,

and regular path
queries

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Outline – Experiences and Limitations

1. Query Complexity

2. Graph- vs. Relational-Friendly Queries

3. Query Size And Patterns

4. A Wishlist and Conclusions

5

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Query Complexity

• Started from 15 out 25

• Queries 2, 4, 17, 23, 24: Path queries with
GROUP BY and ORDER BY

• For the rest: Removed missing features

LDBC queries can be challenging to use for evaluating a new query engine

Query # Missing Feature

6 subquery

8 subquery + NOT EXISTS

11 subquery + NOT EXISTS

12 HAVING

14 regular path query (<-/:path*/)

15 HAVING + subquery

20 regular path query (<-/:path*/-)

21 subquery

22 subquery + EXISTS

Problems
1. Breaking the query semantics
2. Complexity

1. Change PGQL, SQL, Cypher, and
GraphFrames motifs)

2. Confirm correctness, repeat

6

5 out of 25

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Graph- vs. Relational-Friendly Queries

0.01

0.1

1

10

100

1000

10000

Q2 Q4 Q6 Q8 Q11 Q12 Q14 Q15 Q17 Q20 Q23 Q24 TOTAL

La
te

n
cy

 (
s,

 lo
g

sc
al

e
)

PGX.D PGX.SM GraphFrames MonetDB PostgreSQL

• LDBC 100 SNB Graph (283M vertices, 1.78B edges)
• PGX.D and GraphFrames with 8 machines

The SQL engines do quite well. Similar results for other graph engines.

7

missing feature

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Q23 in PGQL and SQL

Very clean joins between rather small tables

SELECT COUNT(msg) AS messageCount, …
MATCH (person:person)<-[:hasCreator]-(msg:post|comment)-[:isLocatedIn]->(dst:country),

(person)-[:isLocatedIn]->(city:city)-[:isPartOf]->(homeCountry:country)
WHERE homeCountry.name = 'Egypt' AND homeCountry <> dst
GROUP BY msg.creationDate, destination.name
ORDER BY messageCount DESC, destination.name, msg.creationDate

SELECT COUNT(*) AS messageCount, ...
FROM place pco, place pci, person p, message m, place dest
WHERE pco.pl_placeid = pci.pl_containerplaceid
AND pci.pl_placeid = p.p_placeid
AND p.p_personid = m.m_creatorid
AND m.m_locationid = dest.pl_placeid
AND pco.pl_name = 'Egypt' AND NOT m.m_locationid = pco.pl_placeid

GROUP BY m.m_creationdate, dest.pl_name
ORDER BY messageCount DESC, dest.pl_name, m.m_creationdate

PGQL

SQL

8

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Q23 Breakdown – LDBC 100 (283M vertices, 1.78B edges)

Long pattern, but with little data in most parts

SELECT COUNT(msg) AS messageCount, …
MATCH (person:person)<-[:hasCreator]-(msg:post|comment)-[:isLocatedIn]->dst:country),

(person)-[:isLocatedIn]->(city:city)-[:isPartOf]->(homeCountry:country)
WHERE homeCountry.name = 'Egypt' AND homeCountry <> dst
GROUP BY message.creationDate, destination.name
ORDER BY messageCount DESC, destination.name, message.creationDate

(person:person)<-[:hasCreator]-(msg:post|comment)-[:isLocatedIn]->dst:country),
(person)-[:isLocatedIn]->(city:city)-[:isPartOf]->(homeCountry:country)

75224

10132079

Egypt

All

SELECT country.name, COUNT(*) AS personCount
MATCH (:person)-[:isLocatedIn]->(:city)

-[:isPartOf]->(country:country)
GROUP BY country
ORDER BY COUNT(*) DESC

+-----------------------+
| country.name | Count |
+-----------------------+
India	65594
China	65044
Mexico	13352

(person)-[:isLocatedIn]->(city:city)-[:isPartOf]->(homeCountry:country) 3351Egypt

9

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Recurring Patterns

Query # Pattern

2, 4, 11, 15, 17, 23, 24 (country:country) <-[:isPartOf]- (city:city) <-[:isLocatedIn]- (person:person)
with country.name filter

4, 6, 20, 23 Tag or tagClass filter

All but query 17 GROUP BY

All but query 17 ORDER BY

All Fully labeled accesses

Not so many
intermediate results (i.e.,

small-ish queries)

What relational databases are
built to do well

10

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Pattern Matching Time Compared to Group By / Order By

0

10

20

30

40

50

60

70

0

2

4

6

8

10

12

Q2 Q4 Q6 Q8 Q12 Q14 Q15 Q20 Q23 Q24

G
ro

o
u

p
+O

rd
e

r-
b

y
Ex

e
cu

ti
o

n

Ti
m

e
 P

e
rc

e
n

ta
ge

La
te

n
cy

 (
se

c)

Matching Group-by Order-by Group+Order-by Ratio

• LDBC 100 (283M vertices, 1.78B edges)

Many queries are GROUP-BY and ORDER-BY heavy

11

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

A Possible Wish List (1/2)

• A set with simple(r) pattern matching queries

– No dependence on subqueries and regular path queries

• A set with realistic larger queries

– Can be partially achieved by removing filters

– Could e.g., analyze cycles in posts and comments

• Maybe less dependence on GROUP BY and ORDER BY

(that would have made our lives easier while developing / evaluating PGX.D)

12

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

A Possible Wish List (2/2)

• Queries that leverage the (homogenous) property graph model

– E.g., paths / cycles:

– Could combine with algorithms, e.g., pagerank values

• Look at the distributed graph direction (chokepoint)

– E.g., how does graph partitioning affect different queries?

13

(that would have made our lives easier while developing / evaluating PGX.D)

SELECT labels(a), labels(b), labels(c), COUNT(*)
MATCH (a)->(b)->(c)->(a) GROUP BY a, b, c

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Conclusions

• Standardized graph benchmarks are a necessity

• LDBC SNB is a great effort towards this direction

– but not easy for new engines as it requires complex query constructs

From our recent experience, we see the need for:
– simpler,

– still meaningful,

– varying size queries

that can stress single machine and distributed graph engines

Thank You! Contact: vasileios.trigonakis@oracle.com

14

