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RedisGraph
property graph
representation



4 types of matrices

THE adjacency matrix
Label matrices
Relation matrices

Relationship mapping matrices

All matrices share the same dimensions
Hrows = #columns = #nodes



THE Adjacency matrix



THE Adjacency matrix

e Boolean



THE Adjacency matrix

e Relation type agnostic



THE Adjacency matrix

e Label agnhostic



THE Adjacency matrix

e Directional, M|}, j] = 1

Node i connected to Node ]
*might be multiple times with different
relationship types



Label matrix




Label matrix

e Boolean



Label matrix

 One for each node type



Label matrix

e Diagonal
LI, i]=1
Node with ID i1 1s labeled as L



Relation matrix



Relation matrix

e Directional, R[1,jJ] = 1

Node i connected to Node |
*might be multiple times with
relationship type R



Relation mapping matrix
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Relation mapping matrix

* 64bit entries

RM][i, j] - either edge ID
If node 1 1s connected to node j with a
single edge of type R

Pointer to edge IDs array if node 1 Is
connected to node j with multiple
edges of type R



Query Execution
Traversals

Chain:
A path where each node on the path appears only
once and the sum of its In/Out degrees < 3



Query Execution
Traversals

R

MATCH (a:L)-[:R]->(c)<-[]-(b:L)
RETURN b



Algebraic expression

R

I



Evaluation

I

Matrix multiplication is associative
Motivation keep sparsity

[



Evaluation

bT

IS



Evaluation

][ L]

Row domain is “Sticky”



Evaluation

L[]

Column domain changes with every “hop”



“2D”



MxM
Lose of information

U]




als connectedto b
But how?
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MATCH (a:L)-[:R]->(c)<-[]-(b:L)

RETURN
b
[+
b
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Intermediate entities

e Referred node/edge

RETURN n,e




Intermediate entities

e \ariable length edges

MATCH (a)-[e:*2..4]->(b)



Intermediate entities

e Filtered entities

WHERE n.v = 34



Break on intermediate
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Break on intermediate

0]
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mel [



Traverse
L*R

Traverse
c*Bt*L
(a, c, b)




High degree nodes
& Cycles

MATCH (a)-[]->(b)-[]->(a)
RETURN a









Improved
Algebraic expressions
construction



Exps = ]
QG = QueryGraph(AST)
CCS = ConnectedComponents(QG)

FOE CCE CCS
(CC empty)
P = LongestPath(CC)
E = AlgebricExpressionFromPath(P)
Es = AlgebricExpressionBreakInter(E)
EXps Es
cic P

Pseudo code




Query Graph

MATCH (a)-[]->(b)-[1->(a),
(a)-[1->(c), (d)-[I->(e)



Connected Components



Longest path

PO = {C, A, B}

P1={B, A, C}



Algebraic expression
from path (chain)
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Break on intermediates
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Remove path from
Query Graph

@O

()



Algebraic expression
from path (chain)



EXpressions

0] L] J[o

Exp O Exp 1 Exp 2



Arrangements

Permute ([Exp0O, Exp1, Exp2]), N!
Pick best arrangement to be executed In order
Valid arrangement:
1. Expl either src or dest node iIs already resolved

by previous expression.

2. Early filters



(b, a)

(a, b)

(a, c)



(b, a)

(a, b)

(a, c)



Thank you
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