Evaluating Cypher queries
as algebraic expressions
within RedisGraph

Roi Lipman
RedislLabs

RedisGraph
property graph
representation

4 types of matrices

THE adjacency matrix
Label matrices
Relation matrices

Relationship mapping matrices

All matrices share the same dimensions
Hrows = #columns = #nodes

THE Adjacency matrix

THE Adjacency matrix

e Boolean

THE Adjacency matrix

e Relation type agnostic

THE Adjacency matrix

e Label agnhostic

THE Adjacency matrix

e Directional, M|}, j] = 1

Node i connected to Node]
*might be multiple times with different
relationship types

Label matrix

Label matrix

e Boolean

Label matrix

 One for each node type

Label matrix

e Diagonal
LI, i]=1
Node with ID i1 1s labeled as L

Relation matrix

Relation matrix

e Directional, R[1,jJ] = 1

Node i connected to Node |
*might be multiple times with
relationship type R

Relation mapping matrix

Oxac804a
56 3

Relation mapping matrix

* 64bit entries

RM][i, j] - either edge ID
If node 1 1s connected to node j with a
single edge of type R

Pointer to edge IDs array if node 1 Is
connected to node j with multiple
edges of type R

Query Execution
Traversals

Chain:
A path where each node on the path appears only
once and the sum of its In/Out degrees < 3

Query Execution
Traversals

R

MATCH (a:L)-[:R]->(c)<-[]-(b:L)
RETURN b

Algebraic expression

R

I

Evaluation

I

Matrix multiplication is associative
Motivation keep sparsity

[

Evaluation

bT

IS

Evaluation

][L]

Row domain is “Sticky”

Evaluation

L[]

Column domain changes with every “hop”

“2D”

MxM
Lose of information

U]

als connectedto b
But how?

OO

MATCH (a:L)-[:R]->(c)<-[]-(b:L)

RETURN
b
[+
b

bT

[0

Intermediate entities

e Referred node/edge

RETURN n,e

Intermediate entities

e \ariable length edges

MATCH (a)-[e:*2..4]->(b)

Intermediate entities

e Filtered entities

WHERE n.v = 34

Break on intermediate

[

bT

[0

Break on intermediate

0]

bT b
mel [

Traverse
L*R

Traverse
c*Bt*L
(a, c, b)

High degree nodes
& Cycles

MATCH (a)-[]->(b)-[]->(a)
RETURN a

Improved
Algebraic expressions
construction

Exps =]
QG = QueryGraph(AST)
CCS = ConnectedComponents(QG)

FOE CCE CCS
(CC empty)
P = LongestPath(CC)
E = AlgebricExpressionFromPath(P)
Es = AlgebricExpressionBreakInter(E)
EXps Es
cic P

Pseudo code

Query Graph

MATCH (a)-[]->(b)-[1->(a),
(a)-[1->(c), (d)-[I->(e)

Connected Components

Longest path

PO = {C, A, B}

P1={B, A, C}

Algebraic expression
from path (chain)

.0

Break on intermediates

[%

K

Remove path from
Query Graph

@O

()

Algebraic expression
from path (chain)

EXpressions

0] L] J[o

Exp O Exp 1 Exp 2

Arrangements

Permute ([Exp0O, Exp1, Exp2]), N!
Pick best arrangement to be executed In order
Valid arrangement:
1. Expl either src or dest node iIs already resolved

by previous expression.

2. Early filters

(b, a)

(a, b)

(a, c)

(b, a)

(a, b)

(a, c)

Thank you

Roi Lipman
roi@redislabs.com

mailto:roi@redislabs.com

